
Discrete	
 Topology	
 Generation	

Triangle	
 Intersection	
 Tests	

Two triangle-triangle intersection (TTI) tests were found to be the most widely used in

relevant literature [2],[3] and the one implemented here will be discussed. For the purposes of

describing TTI tests, let us denote the two triangles T0 and T1, and the nodes of the T0 and T1 as

N00, N10, N20, and N01, N11, N21, respectively. Also let us state that for two triangles to intersect

in three dimensions, the following two conditions must exist: two edges of each triangle must

cross the plane of the other, and if so, then two edges must intersect the aforementioned planes

within the boundaries of the triangles.

The TTI demonstrated by Aftosmis [3] involves a Boolean check for intersection that

only involves multiplication and division and does not involve expensive operations like square

roots and trigonometric functions. Once the triangles are found to be intersecting, the end points

of the line segment defining the intersection can be calculated. The aforementioned Boolean test

involves the calculation of the signed volume of a tetrahedron, Tabcd, where a, b, c, and d are the

nodes that define the tetrahedron and ai, bi, ci, and di are the node coordinates. This signed

volume is calculated using Equation 2.
	

()
221100

221100

221100

210

210

210

210

1
1
1
1

6
dcdcdc
dbdbdb
dadada

ddd
ccc
bbb
aaa

TV abcd

−−−

−−−

−−−

==

 Eq. 1

The result is six times the volume of the tetrahedron used to construct the equation. The sign of

the volume, Tabc, is negative when the triangle formed by nodes abc forms a clockwise circuit

when viewed from the observation point of node d. This Boolean test constitutes a topological

primitive and is the fundamental building block for all TTI tests performed in this research.

Recall that for two triangles to intersect in three dimensions, the following two conditions

must exist: two edges of each triangle must cross the plane of the other, and if so, then two edges

must intersect the aforementioned planes within the boundaries of the triangles. To determine if

two edges of each triangle cross the plane of the other, the following is done.

Figure 1.1 Triangle-Edge intersection test using topological primitive

Above in Figure 1.1, an example of using signed tetrahedral volumes to determine if a

line segment pierces a plane is shown [3]. The signed volume defined by (0,1,2,a), V(T0,1,2,a), is

compared to the signed volume (0,1,2,b), V(T0,1,2,b). If they are of opposite sign then the line

segment pierces the plane of the triangle. This must be done for each edge to check to make sure

that at least two edges from each triangle pass this check. Next, it must be determined if the line

segment found to intersect the plane of the triangle pierces within the boundaries of the triangle.

	

1

0

2

P

b

a

	

1

0

2

P

b

a

	

1

0

2

P

b

a

V0(T012a)<0 V0(T012b)>0

Figure 1.2 Triangle-Edge Intersection, Edge within boundary of Triangle

 [V(Ta,1,2,b) < 0 and V(Ta,0,1,b) < 0 and V(Ta,2,0,b) < 0] or

 [V(Ta,1,2,b) > 0 and V(Ta,0,1,b) > 0 and V(Ta,2,0,b) > 0] Eq. 3

In Figure 1.2, an example of using signed tetrahedral volumes to determine if a line

segment pierces a plane within the boundaries of a triangle is shown [3]. Three volumes must be

checked to determine if the line segment pierces within the boundary of the triangle. The

volumes are denoted V(Ta,1,2,b), V(Ta,0,1,b), V(Ta,2,0,b). If all of these volumes have the same sign,

Equation 3, then the edge pierces within the boundaries of the triangle and the pair of triangles

intersects.

A topological primitive is defined in [3] as, “an operation that tests an input and results in

one of a constant number of cases.” It is further stated that, “Such primitive can only classify,

and constructed objects (like the actual locations of the pierce points…) cannot be determined

without further processing. These primitives do, however, provide the intersections implicitly,

and this information suffices…” In this case, the constant number of cases that can be returned

from the volume calculation is three: positive (+), negative (-), or zero. Positive and negative

results represent non-degenerate cases and zero represents some degeneracy involved with the

geometry. By defining “zero” locally for each pair of triangles tested for intersection, this tool

	

1

0

2

P

b

a

	

1

0

2

P

b

a

	

1

0

2

P

b

a

Ta01b Ta20b Ta12b

becomes very robust and does not need computationally-expensive, exact-arithmetic routines.

See the section on robustness later in this section for a more detailed explanation on how

computational errors associated with degenerate geometries are handled.
	

Neighbor	
 Tracing	

Lo and Wang [4] presented a method for further reducing the cost of repairing

intersecting triangular meshes. The intersection between discrete surfaces is defined by a set of

connected line segments. Each pair of triangles that intersect contributes one line segment to this

set. Instead of relying solely on a spatial subdivision scheme to reduce the number of TTI tests

performed, Lo and Wang [4] proposed that once a pair of intersecting triangles was found that

the topology of the mesh be used to construct the set of line segments defining the intersection.

They denoted this process “Tracing Neighbors of Intersecting Triangles (TNOIT).” TNOIT

involves first finding a pair of intersecting triangles, and then the topological relations in the

mesh can be used to move along the lines of intersection in the mesh—further reducing the

number of TTI tests required to repair the mesh.

The determination of how to move through the mesh is determined on the type of

intersection present. In Figure 1.3, three different types of intersections can be seen. Type 1 is a

general intersection where one edge from each triangle intersects the other triangle. Type 2 is a

special case of a general intersection where two edges from one triangle pierce the other triangle.

Type 3 has only one edge that pierces. This means that of the two points that define the line

segment that defines the intersection, one is a node in the existing geometry.

Figure 1.3 Three fundamental types of triangle intersections

In Figure 1.4 the three different types of intersections can be seen in place in a local

mesh. This demonstrates how TNOIT can be used to construct the chain or loop of line

segments that define an intersection. Starting with, as indicated in Figure 1.4a, triangles F1 and

T1, if the intersection point, P, lies on the edge of F1, then the next pair to be tested for

intersection should be T1 and F2—which is topologically adjacent to F1 across the edge. In

Figure 1.4b, a similar process is used to move from the pair T1 and F1 to F1 and T2. However,

in Figure 1.4c, the next intersection point is a node and therefore all of the topologically adjacent

elements, T1-T5, must be tested for intersection with F1 before moving on.

Figure 1.4 Three possibilities of how to move through a mesh using neighbor tracing

In addition to the above three intersection types, others which include degenerate

geometries have been developed. As can be seen in Figure 1.5, an edge might not pierce within

the boundaries of a triangle. If it does not, then it either must pierce an edge of the triangle, or an

edge pierces a node of the triangle. Each of these requires different methods of moving to the

A

B

D
C

G
E

P
Q

	

A

B

D
C

G

E P
Q

	

A

B

D
C

G
E

P Q

	

	

T1

F2

F1
P

	

	

T1

T2

F1

P

	

T5

T4
T3 T2

T1
F1

next pair of intersecting triangles. In Figure 1.5a, an edge of T1 intersects an edge of F1. This

means that both edges would have to be traversed in order to move to the next pair of

intersecting triangles. In Figure 1.5b, an edge of T1 intersects a node of F1. This means the

element topologically adjacent to T1 would have to be tested against every element attached to

the intersecting node, P, in order to move to the next pair of intersecting triangles.

Figure 1.5 Degenerate possibilities of intersections

	

Local	
 Repair	

While tracing the segments through the mesh, the segments that lie in each triangle are

stored for later use. These line segments represent the intersection between the two surfaces. In

order to remove the intersection, the line segments must be inserted into both surfaces. This

would leave a set of non-manifold edges shared by the intersecting surfaces, but the intersection

would be removed. The process of inserting these line segments into the surfaces is simplified

by the realization that each triangle has a set of edges that need to be inserted locally. This

means that instead of a global set of edges to insert into the mesh, the problem can be broken into

many smaller sets of edges inserted into one triangle locally. Inserting edges in a triangle is

strictly a two dimensional task and no attempt to make a three dimensional generalization of this

	

	

	

	

T1

F1
T1

F1 a b

P

P

procedure is made here. A temporary, two-dimensional mesh is constructed out of the triangle

and the nodes that define the edges. This local, two-dimensional transformation is accomplished

by rotating the geometry into the x-y.

 By rotating the geometry, instead of projecting it, or using any other means, the

undistorted geometry is transformed into two-dimensional space. This is important because if

the wrong geometry were created in two-dimensional space because of an incorrect

transformation, the resulting three-dimensional geometry would also be incorrect. An example

of the rotated geometry, including the triangle and the to-be-inserted edges can be seen in Figure

1.6a.

Figure 1.6 Local repair view edge insertion

The edges are inserted individually by first inserting the defining nodes and then recovering the

edge, Figure 1.6b. A local min-max reconnection pass is then performed until no more edges fail

Figure	
 1.

	
 	

Figure	
 2.

	

Figure	
 3.

	

the min-max test, Figure 1.6c. Each of these steps, node insertion, edge recovery, and local

reconnection will now be discussed in more detail.
	

1.1 Node Insertion

In order to put edges into the triangulation, the nodes that define the edges must first be

inserted. The process of finding the triangle that contains the node involves another topological

primitive. Let the vector from node N0 to node N1, and node N0 to node N2 be denoted as follows

in Equation 4a and Equation 4b.
	

[]zzyyxx NNNNNNN 01010101 ;; −−−= 	
 a.
	

[]zzyyxx NNNNNNN 02020202 ;; −−−= 	
 b.	

()02012,1,0 2
1 NNA ⊗⋅= 	
 c	

Eq. 4

This topological primitive in this case is the area of a triangle. Equation 4b is used to

calculate the area of a triangle. In two dimensions, the absolute value is removed because the

only non-zero component will be the z component. The z component, along with its sign, is

taken to be the area of the two dimensional triangle. The calculated area is positive if the nodes

form a counter-clockwise circuit, i.e., the resulting vector is in the positive (+) z direction. In

order to test if a node is within the boundaries of a triangle, three areas must be checked.

Figure 1.7 Containing triangle area check

In Figure 1.7a, the three areas that must be checked are the triangles formed by (0,1,P),

(1,2,P), and (2,0,P). If all of these areas are positive, the node, P, is in the interior of the triangle,

(01,2). However, in Figure 1.7b, all three areas are not positive. The area of triangle (2,0,P) is

negative. Therefore the edge, (02) is considered to be “associated with” the negative area.

Because of negative area formed by (2,0,P), the node P is not in the interior of triangle (0,1,2).

The two dimensional node-in-triangle check is used as a path finding mechanism for finding the

containing triangle of a node. Consider Figure 1.8, in which the search for the containing

triangle begins in the seed face. Since the node does not reside in the seed face, the edge that is

associated with the negative area is traversed. For example, in Figure 1.7b, the searching

algorithm would go to the element that is topologically adjacent to edge (02).

	

0 1

2

	

P 	

0 1

2

	

P

a b

Figure 1.8 Two-dimensional, containing triangle search example

This process, calculating areas and traversing edges, is repeated until the containing

triangle is found or the search fails because the node lies on an edge. If a containing triangle is

found, it is split into three triangles, as seen in Figure 1.9a. If the node is found to lie on an edge,

the edge is split as seen in Figure 1.9b.

	
 -­‐	
 -­‐	
 -­‐	
 -­‐	
 -­‐	
 -­‐	
 -­‐	
 alternative	
 path

target
face

projection
of	
 the	
 vertex

Figure 1.9 Triangle splitting and edge splitting example.

It is possible to not include the edge splitting option and rely on the local reconnection

routine to improve mesh quality. However, the creation of nearly degenerate geometry by

inserting nodes that are close to edges might cause the subsequent node insertions or containing-

triangle searches to fail. Nearly degenerate geometry could also cause incorrect results from

numerical inaccuracies. Therefore, the edge-split option was included.
	

1.2 Edge Recovery

Once the defining nodes of an edge are successfully inserted into the triangulation, the

edge itself must be recovered. It has been proven that the recovery of an edge in two dimensions

is always guaranteed through a topological operation called edge swapping (Figure 1.13) Error!

Reference source not found.. In order to recover the edge, a list of edges that should be

swapped needs to be constructed. It should be noted that the equations used to determine if two

edges intersect within some tolerance do not calculate the point of intersection directly. They

	

0 1

2

P

a

0

1

2

3
P

b

	

	

instead calculate the closest point on an edge to the other edge. The list of edges that should be

swapped contains only the edges that intersect the to-be-recovered edge. An example of this can

be seen in Figure 1.10. Starting at the node on the left, each edge that intersects the to-be-

recovered edge is traversed—and stored—until the node on the right is found.

Figure 1.10 Finding edges that intersect the to-be-recovered edge using edge tracking

Once the list has been constructed, the following algorithm can be used to recover the

desired edge [6].

1. Each edge of the set is swapped if

a. First Contraint: its new swapped configuration does not create intersections
b. Second Contraint: its new swapped configuration does not intersect the to-be-

recovered edge.
2. If there are edge left unswapped in the list due to the constraints of 1(a) and 1(b) then

the following strategy is performed.
a. Relax the second constraint for the first unswapped edge and try to perform

the swaps of the rest of unswapped edges. Flag the first relaxed edge still
unswapped for the secong visit.

b. A sweep of edges with both of the constraints being in effect is followed for
swap.

c. This trial scheme is continued until the edge is recovered or no swap could be
performed due to geometrical validity, i.e. first constraint.

EDGE

edge
tracking

d. If the edge is not recovered due to the first constraint then it is replaced with a
set of edges forming a path between its end vertices. These edge pieces are
recursively tried to be recovered.

Figure 1.11 Edge swapping algorithm

This process is demonstrated in Figure 1.12. The list of swappable edges includes edge,

1, 2, 3, and 4. Looping through the edges on Figure 1.12 the first pass we see that edges 1 and 2

can be swapped. Edge 3 cannot be swapped because it violates condition 1a from Figure 1.11.

Once edge 4 is swapped, then edge 3 can be swapped in the second pass to arrive at the desired

geometry. It is worth noting again that this process is guaranteed to converge to the desired

result in two dimensions.

Figure 1.12 Edge recovery process via edge swapping

	

1.3 Local Reconnection

Once all of the required edges have been recovered in the temporary mesh, a constrained

min-max (minimize the maximum angle) reconnection algorithm is used to improve the element

quality is the mesh. The aforementioned constraints are the inserted edges. These edges must be

present for the final geometry to repair the intersection. For a local edge to be reconnected, its

(b)

(a) (d)

(c)

(e)

(f)

1 2
3

4

2
3

4

3

4

3

4

3

reconnected state must reduce the maximum angle of the current state. An example of this can

be seen in Figure 1.13.

Figure 1.13 Local reconnection example using Min-Max criterion

In addition to the reconnection criterion, a stopping criterion was needed to ensure that

the process did not reconnect geometry needlessly. If the maximum angle in the current or

reconnected geometry is near ninety degrees, then the edge is left alone—since this can cause

endless reconnections to be made while trying to improve the element quality. The loop that

reconnects this geometry, since it avoids infinite reconnections, is guaranteed to converge [7].
	

1.4 Translating Local to Global

As stated previously, a two dimensional mesh was created for the purposes of simplifying

the process of inserting nodes and subsequent edges into individual triangles. After all of the

nodes have been inserted and edges recovered in the two-dimensional mesh, the topology of the

two-dimensional mesh is used to update the topology of the three-dimensional mesh without any

further transformations. This is accomplished through the use of “parent” nodes. The node class

has a data member called a parent_GRX_NODE_ which is a pointer to a node. Since all of the

0

1

2

3

b

0

1

2

3

a

maximum angle
(obtuse triangle)

maximum angle
reduced

geometry exists in three dimensions and then is transformed to two dimensions, each of the

“two-dimensional” nodes has a “parent” from which it is derived or created. Creating the three-

dimensional topology from the two dimensional, temporary mesh is as simple as creating all of

the triangles that exists in the two dimensional mesh using the “parent” nodes instead of the

“child” nodes for the connectivity. No additional calculations are used to transform the

temporary mesh back to three dimensions—only the connectivity from the two dimensional

mesh.
	

Post	
 Processing	
 Intersecting	
 Mesh	

The process of inserting the line segments, or edges, defining the intersection into all of

the appropriate discrete surfaces necessarily creates non-manifold meshes. The purpose of this

tool is to aid in the production of watertight, manifold meshes. Therefore, some way of

removing these non-manifold meshes needed to be developed, otherwise the intersection has

removed one problem, intersecting geometry, and created another, non-manifold edges. One

solution is to use a surface painting algorithm. This post-processing step of surface painting

would, if possible, “break-out” the surface defined in part or in whole by the non-manifold edges

just created by the mesh intersection routines. These surfaces that have been “broken-out” can

be removed or kept by the user based on the desired results.
	
 	

References	

[1] Park,	
 Sang	
 C.,	
 “Triangular	
 mesh	
 intersection,”	
 Department	
 of	
 Information	
 &	
 Systems	
 Engineering,	

Ajou	
 University,	
 August	
 2004.	

[2] Möller,	
 Tomas,	
 “A	
 Fast	
 Triangle-­‐Triangle	
 Intersection	
 Test,”	
 Journal	
 of	
 Graphics	
 Tools,	
 2,	
 no.	
 2	

(1997).	

[3] Aftosmis,	
 M.	
 J.,	
 Berger,	
 M.	
 J.,	
 and	
 J.	
 E.	
 Melton,	
 “Robust	
 and	
 Efficient	
 Cartesian	
 Mesh	
 Generation	
 for	

Component-­‐Based	
 Geometry,”	
 U.S.	
 Air	
 Force	
 Wright	
 Laboratory	
 /	
 NASA	
 Ames,	
 CA.	

[4] Lo,	
 S.	
 H.,	
 and	
 W.	
 X.	
 Wang,	
 “Finite	
 element	
 mesh	
 generation	
 over	
 intersecting	
 curved	
 surfaces	
 by	

tracing	
 of	
 neighbors,”	
 Finite	
 Element	
 in	
 Analysis	
 and	
 Design,	
 41	
 (2005)	
 pp.	
 351-­‐370.	

[5] Gellert,	
 W.,	
 Gottwald,	
 S.,	
 Hellwich,	
 M.,	
 Kästner,	
 H,	
 and	
 H.	
 Knstner	
 (Eds),	
 VNR	
 Concise	
 Encyclopedia	
 of	

Mathematics,	
 2nd	
 ed.	
 New	
 Yor,	
 Van	
 Nostrand	
 Reinhold,	
 pp.	
 541-­‐543,	
 1989.	

[6] Karamete,	
 B.	
 Kaan,	
 Garimella,	
 Rao	
 V.,	
 and	
 Mark	
 S.	
 Shepard,	
 “Recovery	
 of	
 an	
 arbitrary	
 edge	
 on	
 an	

existing	
 surface	
 mesh	
 using	
 local	
 mesh	
 modifications,”	
 International	
 Journal	
 for	
 Numerical	
 Methods	

in	
 Engineering,	
 50	
 (2001),	
 pp.	
 1389-­‐1409.	

[7] Lawson,	
 Charles	
 L.,	
 “Properties	
 of	
 n-­‐dimensional	
 triangulations”,	
 CAGD	
 3,	
 no.	
 4	
 (1986),	
 pp.	
 231-­‐246.	

[8] Edelsbrunner,	
 H.	
 and	
 Ernst	
 Peter	
 Mücke,	
 “Simulation	
 of	
 Simplicity:	
 A	
 Technique	
 to	
 Cope	
 with	

Degenerate	
 Cases	
 in	
 Geometric	
 Algorithms”,	
 University	
 of	
 Illinois	
 at	
 Urbana-­‐Champain,	
 1990.	

	

