
AFLR4 Developer Integration Notes

AFLR4 can be integrated within other systems relatively easily depending on the CAD usage.
Integration requires access to and installation of the AFLR4 developer library package file
AFLR4_LIB,*.tar.gz or source package AFLR4_SRC,*.tar.gz (limited access). Installation and setup of
developer package files are described in SimSys Developer Install and Setup Instructions (pdf).
Please contact David L. Marcum for assistance. Call back functions that allow registering external
routines for integration with specific CAD systems and for other tasks are included. AFLR4 uses the
Engineering Geometry Aircraft Design System (EGADS) from MIT and Open CASCADE from Open
CASCADE S.A.S. Both EGADS and Open CASCADE are freely available as part of the Engineering
Sketch Pad (ESP) and licensed under The GNU Lesser General Public License, version 2.1. EGADS
and Open CASCADE libraries are required only to use the CAD geometry capability integrated in
AFLR4. All AFLR4 package files include the required libraries and headers. An integration library of
functions for EGADS use is included with AFLR4. Integration with other CAD systems requires
creation of equivalent functions to replace the built-in functionality. See the last section, Integration
of Alternative CAD Systems, for more information.

Integration of AFLR4 for Automated Surface Meshing

AFLR4 integration related tasks are included within the routines located in the src/aflr4/main/
directory. All of these routines are specific to integration of AFLR4 within a main program or system.
They typically serve as simplified APIs of various startup or I/O tasks. All, except the main program
file aflr4.c have a file name of the form aflr4_main_xxx.c. All of these routines are referenced only by
other routines in the same directory. They are not included in the AFLR4 library libaflr4.a (or aflr4.lib
or AFLR.dll on Windows) and are instead included in a separate libaflr4_main.a (or aflr4_main.lib on
Windows). Some or all of the aflr4_main_xxx routines could also be compiled directly with a main
program.

Implementation basics are best obtained by viewing the sequence of calls within the main program. In
any integration of AFLR4 the starting point is to setup integration of external routines for a specific
CAD system, parallel processing, and file I/O. Default call back functions for registering routines are
included in routine aflr4_main_register. It should it be called before calling other AFLR4 routines.
Define flags are used to control which external routines are registered. Alternatively, you can simply
include the contents of this routine in your code.

Register external functions for AFLR4.

void aflr4_main_register (void)

Next, the input parameters must be set. Multiple choices are available. The input parameters include
parameters that control what AFLR4 does along with the geometry definition for the given
configuration. A reduced set of the most important parameters are described in the next section on
Integration of AFLR4 for Interactive Use. It should not be necessary to set other parameters. They
are available only for very specific special case uses and for completeness. A description of each
input parameter is provided on the AFLR4 Option Details page. Select I/O related input parameters
are described in the following.

Input_File_Name

Input CAD or discrete geometry definition file case name or full file name.
Specifies either the case name or full file name for the input CAD file or discrete geometry
definition file (surface mesh file). Note that if only a case name is specified, then an input CAD
file is searched for first. If no suitable CAD file type is found, then a discrete definition file is
searched for.

Output_Grid_File_Name

Output grid file name or suffix.
Specifies either the full file name or file name suffix for the output grid file.
default=”.meshb”

Output_File_Flag

Output file flag.
If Output_File_Flag=0, then send all output to standard output or standard error.
If Output_File_Flag=1, then send informational output to both standard output (or standard
error) and a file named case_name.program_name.out.
If Output_File_Flag=2, then send maximum informational output to a file named
case_name.program_name.out only.
If Output_File_Flag=-1, then send and append informational output to both standard output (or
standard error) and a file named case_name.program_name.out.
If Output_File_Flag=-2, then send maximum and append informational output to a file named
case_name.program_name.out only.
Error messages will always go to both the file (if any) and standard error.
default=0 min=-2 max=2

Input parameters can be specified using either the AFLR4 parameter structure
AFLR4_Param_Struct_Ptr or an argument vector. The main program provided uses the system
command line argument vector by default. Input parameters in all cases are specified by a name and
a value. Only known parameter names should be specified. Unknown parameter names will produce
an error message and a non-zero return error flag when aflr4_main_setup_input_param is called. For
all input parameter methods, aflr4_main_setup_input_param can be called to do input data and
parameter structure checking and setup along with startup tasks. Note that the case name used for
any output files is derived from the Output_Grid_File_Name. If that is not set or is only a suffix, then
the case name is derived from the Input_File_Name. If neither is set, then the case name must be
directly set using ug_set_case_name (“case_name”) prior to calling routine
aflr4_main_setup_input_param.

Do input data and parameter structure setup and checking along with startup tasks using either
the program argument vector or the parameter structure.

INT_ aflr4_main_setup_input_param (char *argv[], int argc,

UG_Param_Struct **AFLR4_Param_Struct_Ptr)

INPUT ARGUMENTS

Note: If argc = 0 then argv is ignored and can be NULL.
AFLR4_Param_Struct_Ptr is used and assumed to be initialized and set.
If argc > 0 then argv is used and assumed to be set.
AFLR4_Param_Struct_Ptr may be NULL on input and will be allocated, initialized, and
set.

argv Program command line argument vector or equivalent.

argc Program command line argument count or equivalent.

AFLR4_Param_Struct_Ptr AFLR4 input parameter structure.

RETURN VALUE

0 Normal completion without errors.
>0 An error occurred.

OUTPUT ARGUMENTS

Note: If argc = 0 then AFLR4_Param_Struct_Ptr may include new parameter values.
It will not be reallocated.

AFLR4_Param_Struct_Ptr AFLR4 input parameter structure.

While the main program provided uses the system command line argument vector, an alternative is to
use the AFLR4 parameter structure to set all input parameters. An example of this mode is shown in
the test mode routine aflr4_main_test_mode_input for test_input_mode=1. In this mode, character
input parameters (Input_File_Name and Output_Grid_File_Name) are set using ug_set_char_param.

ug_set_char_param (“name_of_param”, “char_param”, AFLR4_Param_Struct);

And, I/O related integer input parameters (Output_File_Flag) are set using ug_set_int_param.

ug_set_int_param (“name_of_param”, param_value, AFLR4_Param_Struct);

Other input parameters are set in a similar manner and are described in the next section on
Integration of AFLR4 for Interactive Use.

Another mode of setting the input parameters is to create and set an argument vector with desired
input parameters. An example of this method is shown in the test mode routine
aflr4_main_test_mode_input for test_input_mode=2. When using an argument vector, the parameter
structure can be setup by aflr4_main_setup_input_param. The example shown in
aflr4_main_test_mode_input illustrates how to set new argument vector entries using
ug_add_new_arg, ug_add_flag_param_arg, ug_add_int_param_arg, ug_add_double_param_arg,
and ug_add_char_param_arg routines. The routine ug_add_new_arg can be used to allocate and
initialize a new argument vector.

Allocate and initialize a new argument vector or add a new argument to an argument vector.

INT_ ug_add_new_arg (char ***argv, char *new_arg)

INPUT ARGUMENTS

argv Argument vector.

new_arg New argument to add to the argument vector.

If new_arg = “allocate_and_initialize_argv" then allocate a new argument vector
with one empty argument.
Otherwise set the new_arg string as a new argument vector entry added to the
existing argument vector.

RETURN VALUE

0 Normal completion without errors.
>0 An error occurred.

OUTPUT ARGUMENTS

argv New argument vector.

After a new argument vector is created the arguments can be added using the following routines.

ug_add_flag_arg (“flag”, argc, argv);

ug_add_int_arg (“name_of_param”, param_value, argc, argv);

ug_add_double_arg (“name_of_param”, param_value, argc, argv);

ug_add_char_arg (“name_of_param”, “char_param”, argc, argv);

Note that if input parameter checking and startup tasks are not needed, then alternative methods to
calling aflr4_main_setup_input_param may be used to set the required AFLR4 input parameter
structure. In this case, aflr4_setup_param may be called instead if the argument vector is directly set
and used to set input parameters. If the AFLR4 input parameter structure is directly set and used to
set input parameters, then no call is needed to either aflr4_main_setup_input_param or
aflr4_setup_param.

Allocate, initialize and setup the AFLR4 parameter structure.

INT_ aflr4_ setup_ param (INT_ mmsg_setup, INT_ no_aflr2, int argc, char *argv[],
UG_Param_Struct **AFLR4_Param_Struct_Ptr)

INPUT ARGUMENTS

mmsg_setup Setup message flag.

If mmsg_setup = 0 then do not output setup messages

If mmsg_setup = 1 then output setup messages

no_aflr2 AFLR2 input parameter flag.
If no_aflr2 = 0 then include AFLR2 input parameters.
This should always be set to 0 for usage described above
If no_aflr2 = 1 then do not include AFLR2 input parameters.

argc Argument count.

argv Argument vector.

RETURN VALUE

0 Normal completion without errors.
>0 An error occurred.

OUTPUT ARGUMENTS

AFLR4_Param_Struct_Ptr AFLR4 input parameter structure allocated, initialized and set

with options found in the argument vector.

Choices are also available for specifying the input data that defines the configuration geometry. By
default, this data is input and set from a file specified in the input parameters. Alternatively, other
means of setting the data that defines the geometry can be used, such as another file reader or a
geometry creation part of the system in which AFLR4 is being integrated. No examples of such are
shown in the main program. For CAD geometry definitions the CAD structure “model” must be set
with use of an alternative method. And, for discrete definitions “nbface, nnode, idibf, inibf, and x” must
be set with use of an alternative method. In default mode, AFLR4 internally reads and sets CAD or
discrete geometry definition data along with saving it internally using aflr4_main_data_input.

Read and set CAD or discrete geometry definition data.

INT_ aflr4_main_data_input (UG_Param_Struct *AFLR4_Param_Struct_Ptr)

INPUT ARGUMENTS

AFLR4_Param_Struct_Ptr AFLR4 input parameter structure.

RETURN VALUE

0 Normal completion without errors.
>0 An error occurred.

If input data is set directly then the geometry definition type must be set directly.

ug_set_int_param ("geom_type", 1, AFLR4_Param_Struct_Ptr); // CAD definition

ug_set_int_param ("geom_type", 2, AFLR4_Param_Struct_Ptr); // discrete definition

Definition data must then be set with either aflr4_set_ext_cad_data or dgeom_set_disc_def_data.

Set CAD geometry definition data.

INT_ aflr4_set_ext_cad_data (void *model)

INPUT ARGUMENTS

model CAD geometry definition data structure.

RETURN VALUE

0 Normal completion without errors.
>0 An error occurred.

Set discrete geometry definition data.

INT_ dgeom_set_disc_def_data (INT_ nbface, INT_ nnode, INT_1D *idibf, INT_3D *inibf,

DOUBLE_3D *x)

INPUT ARGUMENTS

nbface Number of tria-faces for discrete geometry definition.

nnode Number of nodes/vertices for discrete geometry definition.

idibf Tria-face surface ID label (nbface+1 in length) for discrete geometry definition.

inibf Tria-face connectivity (nbface+1 in length) for discrete geometry definition.

x XYZ coordinates (nnode+1 in length) for discrete geometry definition.

RETURN VALUE

0 Normal completion without errors.
>0 An error occurred.

After all input data is setup, the configuration surface mesh can be generated. Routine
aflr4_setup_and_grid_gen sets up the geometry data, automatic spacing parameters, and generates
a surface mesh for the given input data and geometry configuration

Setup geometry data and automatic spacing parameters and generate complete
surface grid for given configuration.

INT_ aflr4_setup_and_grid_gen (UG_Param_Struct *AFLR4_Param_Struct_Ptr);

INPUT ARGUMENTS

AFLR4_Param_Struct_Ptr AFLR4 input parameter structure.

RETURN VALUE

0 Normal completion without errors.
>0 An error occurred.

OUTPUT ARGUMENTS

AFLR4_Param_Struct AFLR4 input parameter data structure with possible changes.

The generated surface mesh and all local parameters are stored internally and can be output to a file
using routine aflr4_main_data_output.

Write output surface mesh data.

INT_ aflr4_main_data_output (UG_Param_Struct *AFLR4_Param_Struct_Ptr)

INPUT ARGUMENTS

AFLR4_Param_Struct_Ptr AFLR4 input parameter structure.

RETURN VALUE

0 Normal completion without errors.
>0 An error occurred.

Note that if the geometry definition is CAD based and aflr4_main_data_output is not called, then you
must directly reset the CAD geometry definition data structure model using routine
aflr4_cad_geom_reset.

aflr4_cad_geom_reset_attr (AFLR4_Param_Struct_Ptr);

Routine aflr4_get_def can also be used to retrieve the generated surface mesh.

Get a copy of data arrays for a given surface definition.

INT_ aflr4_get_def (INT_ idef, INT_ noquad, INT_ *nbface, INT_ *nnode, INT_ *nquad,

INT_1D **ibcibf, INT_1D **idibf, INT_3D **inibf, INT_4D **iniq,
DOUBLE_2D **u, DOUBLE_3D **x)

INPUT ARGUMENTS

idef ID label for surface definition.

noquad If there are quad faces and noquad=0 then get them.

If there are quad faces and noquad=1 then replace quad-faces with tria-faces.
If there are no quad faces generated, then noquad is not used.

RETURN VALUE

0 Normal completion without errors.
>0 An error occurred.

OUTPUT ARGUMENTS

nbface Number of tria-faces for generated mesh.

nnode Number of nodes/vertices for generated mesh.

nquad Number of quad-faces for generated mesh.

ibcibf Surface face BC label (nbface+nquad+1 in length) for generated mesh.

idibf Surface face ID label (nbface+nquad +1 in length) for generated mesh.

inibf Tria-face connectivity (nbface+1 in length) for generated mesh.

iniq Quad-face connectivity (nquad+1 in length) for generated mesh.

u UV coordinates (nnode+1 in length) for generated mesh.

Note that UV coordinates are local to individual surface definitions. For the overall
glue-only surface mesh these values are not useful on curves shared between
definitions.

x XYZ coordinates (nnode+1 in length) for generated mesh.

Note that the ID label input argument in routine aflr4_get_def for the complete surface mesh (glue-
only composite) can be obtained by the following call.

dgeom_def_get_idef (0, &idef);

Integration of AFLR4 for Interactive Use

AFLR4 can be integrated in an interactive system in which the surface mesh may be generated
multiple times for the same configuration. AFLR4 can be used interactively by calling
aflr4_setup_and_grid_gen (previously described) multiple times. The generated surface mesh and all
local parameters are stored by aflr4_setup_and_grid_gen within the dgeom_data_structure and
dgeom_def_structure.

Prior to calling aflr4_setup_and_grid_gen the CAD or discrete geometry definition data should be
input and set using the process outlined in the previous section. In an interactive environment, when
little is known about the configuration, leave all input parameters at default values before the first call
to aflr4_setup_and_grid_gen, except for the automatic farfield grid BC flag and auto-spacing mode
flag. The following will turn on automatic determination of the farfield (if any) and turn off surface
generation based on curvature and proximity.

ug_set_int_param (“auto_set_ff_bc”, 1, AFLR4_Param_Struct);
ug_set_int_param (“auto_mode”, 0, AFLR4_Param_Struct);

For CAD data files you can also force input attributes to be ignored by setting CAD reset parameter
flag.

ug_set_int_param (“cad_param_reset”, 1, AFLR4_Param_Struct);

Note that if the CAD parameter reset option is not set and a CAD data file has AFLR4 attributes
(named AFLR_* or AFLR4_*) attached to its Model and/or Faces then those attributes will be used to
set the associated AFLR4 parameters. The initial settings recommended above should produce a
surface mesh that is sufficient to visualize the configuration and allow one to set desired parameters
interactively. To generate the surface mesh again, set all desired parameters and reset those set o
the initial step and then call aflr4_setup_and_grid_generation. Note that all data set on the previous
generation is cleared, except for the discrete or CAD geometry definition data, when
aflr4_setup_and_grid_generation is called. The following will reset the automatic farfield grid BC flag,
auto-spacing mode flag, and CAD reset parameter (if set) flags to default values.

ug_set_int_param (“auto_set_ff_bc”, 0, AFLR4_Param_Struct);
ug_set_int_param (“auto_mode”, 2, AFLR4_Param_Struct);
ug_set_int_param (“cad_param_reset”, 1, AFLR4_Param_Struct);

Alternatively, you can get the default values directly and then reset the parameter.

ug_get_int_param (“auto_set_ff_bc@def”, &auto_set_ff_bc, AFLR4_Param_Struct);
ug_get_int_param (“auto_mode@def”, &auto_mode, AFLR4_Param_Struct);
ug_get_int_param (“cad_param_reset@def”, &cad_param_reset, AFLR4_Param_Struct);

ug_set_int_param (“auto_set_ff_bc”, auto_set_ff_bc, AFLR4_Param_Struct);
ug_set_int_param (“auto_mode”, auto_mode, AFLR4_Param_Struct);
ug_set_int_param (“cad_param_reset”, cad_param_reset, AFLR4_Param_Struct);

Note that a farfield can be added to a configuration using the farfield add-on flag and size factor. Set
these parameters using ug_set_int_param for add_ff_geom and ug_set_double_param for ff_size.

add_ff_geom

Farfield add-on flag.
If add_ff_geom=0 do not add a farfield geometry to the configuration.
If add_ff_geom=1 a box-shaped farfield geometry definition is added to the configuration. The
farfield box is created with all sides set to length L determined from the configuration bounding-
box multiplied by the farfield size factor. Where

Lx = ff_size * (Xmax-Xmin)
Ly = ff_size * (Ymax-Ymin)
Lz = ff_size * (Zmax-Zmin)
L = MAX (Lx, Ly, Lz)

If add_ff_geom=2 then Lx, Ly, Lz are used to create a rectangular box.
Note that the option to automatically set farfield BCs (auto_set_ff_bc=1) is turned on when this
option is on (add_ff_geom=1 or 2).
default=0 min=0 max=2

ff_size

Farfield size factor.
default=10

In an interactive environment the following AFLR4 input parameters would be appropriate to set prior
to regenerating the surface mesh with a call to aflr4_setup_and_grid_generation. Each of these and
are “global” in the sense that they alter the automatic mesh spacing and/or surface meshing
processes for all definitions of the overall configuration. The following integer global parameters are
set using calls to routine ug_set_int_param.

ug_set_int_param (“name_of_param”, param_value, AFLR4_Param_Struct);

auto_mode

Auto-spacing mode flag.
If auto_mode = 0 then do not set surface mesh spacing automatically. Note that bounding
curve curvature is always used to determine bounding curve spacing.
If auto_mode = 1 then set surface mesh spacing automatically based on curvature.
If auto_mode = 2 then set surface mesh spacing automatically based on curvature and
modification of spacing with proximity checking. Proximity of components/bodies to each other
is estimated and surface spacing is locally reduced if needed. Proximity checking is
automatically disabled if there is only one component/body defined. Note that the goal of
proximity checking is that a sufficient number of elements will be generated between surfaces
that are close to each other.
default=2 min=0 max=2

auto_set_ff_bc

Automatic farfield grid BC flag.
If auto_set_ff_bc=0 then no surface definitions will be automatically set to a farfield grid BC.
If auto_set_ff_bc=1 then automatic farfield grid BC mode is active and AFLR4 will determine
which body is the is the outermost and set the grid BC flag to farfield for all surface definitions
of that body. If there is only one body, or a farfield grid BC is set for any surface definition, then
automatic farfield grid BC mode is turned off (auto_set_ff_bc=0) and nothing is done.
default=0 min=0 max=1

mer_all

Global edge mesh spacing refinement weight flag.
If mer_all = 0 then do not reduce edge mesh spacing.
If mier4 = 1 then reduce edge mesh spacing based on discontinuity level between adjacent
surfaces on both sides of the edge. For each surface, the level of discontinuity (as defined by
angerw1 and angerw2) determines the edge spacing refinement weight for potentially reducing
the edge spacing. This option is equivalent to setting the edge mesh spacing refinement
weight to erw_all for each surface definition. Note that no modification is done to edges that
belong to surfaces with a grid BC of farfield or BL intersecting.
default=0 min=0 max=1

mier4

Isolated edge refinement flag.
An isolated interior edge is connected only to boundary nodes. Isolated edges are refined by
placing a new node in the middle of the edge.
If mier4 = 0 then do not refine isolated interior edges.
If mier4 = 1 then refine isolated interior edges if the surface has local curvature. Local relative
curvature is defined using a factor multiplied by the deviation between the location of a point in
the middle of a surface mesh discrete edge and the location of the same point on the actual
surface.
If mier4 = 2 then refine all isolated interior edges.
default=1 min=0 max=2

min_ncell

Minimum number of cells between two components/bodies.
Proximity of components/bodies to each other is estimated and surface spacing is locally
reduced if needed (see auto_mode). Local surface spacing is selectively reduced when
components/bodies are close and their existing local surface spacing would generate less than
the minimum number of cells specified by min_ncell. or if there is only one component/body
defined.
default=3 min=1 max=2000000000

The following floating-point global parameters are set using calls to routine ug_set_double_param.

ug_set_double_param (“name_of_param”, param_value, AFLR4_Param_Struct);

abs_min_scale

Relative scale of absolute minimum spacing to reference length.
The relative scale of absolute minimum spacing to reference length (ref_len) controls the
absolute minimum spacing that can be set on any component/body surface by proximity
checking. The parameters ref_len, max_scale, min_scale and abs_min_scale are all used to
set spacing values on all component/body surfaces (those that are not on farfield or BL
intersecting surfaces). Note that the value of abs_min_scale is limited to be less than or equal
to min_scale.

max_spacing = max_scale * ref_len
min_spacing = min_scale * ref_len
abs_min_spacing = abs_min_scale * ref_len

default=0.0025 min=1e-12 max=1

max_scale

Relative scale of maximum spacing to reference length.
The relative scale of maximum spacing to reference length (ref_len) controls the maximum
spacing that can be set on any component/body surface. The parameters ref_len, max_scale,
min_scale and abs_min_scale are all used to set spacing values on all component/body
surfaces (those that are not on farfield or BL intersecting surface).

max_spacing = max_scale * ref_len
min_spacing = min_scale * ref_len
abs_min_spacing = abs_min_scale * ref_len

default=0.1 min=1e-12 max=1

min_scale

Relative scale of minimum spacing to reference length.
The relative scale of minimum spacing to reference length (ref_len) controls the minimum
spacing that can be set on any component/body surface. The parameters ref_len, max_scale,
min_scale and abs_min_scale are all used to set spacing values on all component/body
surfaces (those that are not on farfield or BL intersecting surface).

max_spacing = max_scale * ref_len
min_spacing = min_scale * ref_len
abs_min_spacing = abs_min_scale * ref_len

default=0.005 min=1e-12 max=1

ref_len

Reference length for components/bodies in grid units. Reference length should be set to a
physically relevant characteristic length for the configuration such as wing chord length or pipe
diameter. If ref_len = 0 then it will be set to the bounding box for the largest component/body of
interest. The parameters ref_len, max_scale, min_scale and abs_min_scale are all used to set

spacing values on all component/body surfaces (those that are not on farfield or BL
intersecting surfaces).

max_spacing = max_scale * ref_len
min_spacing = min_scale * ref_len
abs_min_spacing = abs_min_scale * ref_len

default=0 min=0 max=1e+19

ff_cdfr

Farfield growth rate for field point spacing.
The farfield spacing is set to a uniform value dependent upon the maximum size of the
domain, maximum size of inner bodies, maximum and minimum body spacing, and farfield
growth rate.

ff_spacing = (ff_cdfr-1)*L+(min_spacing+max_spacing)/2
where L is the approximate distance between inner bodies and farfield.
default=1.3 min=1 max=10

sf_global

Global surface mesh spacing scale factor.
The surface mesh spacing can be scaled by a global scale factor given by sf_global. With the
global scale factor, the calculated spacing is multiplied by the value of sf_global (if it is not
equal to 1). Note that the global spacing scale factor sf_global is independent of the surface
mesh spacing scale factor that can be set on individual surface definitions.
default=1 min=0.001 max=1000

erw_all

Global edge mesh spacing refinement weight.
Edge mesh spacing can be reduced on all surfaces (if mer_all=1) based on discontinuity level
between adjacent surfaces on both sides of the edge. For each surface the level of
discontinuity (as defined by angerw1 and angerw2) determines the edge spacing refinement
weight for potentially reducing the edge spacing. The edge mesh spacing refinement weight is
then used as an interpolation weight between the unmodified spacing and the modified
spacing. A value of one applies the maximum modification and a value of zero applies no
change in edge spacing. If the global edge mesh spacing refinement weight flag, mer_all, is
set to 1 then that is equivalent to setting the edge mesh spacing refinement weight equal to
erw_all on all surface definitions. Note that no modification is done to edges that belong to
surfaces with a grid BC of farfield or BL intersecting. Also, note that the global weight, erw_all,
is not applicable if mer_all=0.
default=0.8 min=0 max=1

BL_thickness

Boundary layer thickness for proximity checking.
Proximity of components/bodies to each other is estimated and surface spacing is locally
reduced if needed. Note that if the Reynolds Number, Re_L, is set then the BL_thickness value
is set to an estimate for turbulent flow. If the set or calculated value of BL_thickness>0 then the

boundary layer thickness is included in the calculation for the required surface spacing during
proximity checking.
default=0 min=0 max=1e+19

Re_l

Reynolds Number for estimating BL thickness.
The Reynolds Number based on reference length, Re_l, (if set) along with reference length,
ref_len, are used to estimate the BL thickness, BL_thickness, for turbulent flow. If Re_l>0 then
this estimated value is used to set BL_thickness.
default=0 min=0 max=1e+19

In addition to the above global parameters there are multiple parameters that can be set on each
individual surface definition. These parameters can only be set after the configuration is defined and
registered within the DGEOM definition structure and the surface mesh is generated which is done
during the first call to aflr4_setup_and_grid_gen. Get and set these “local” parameters using the
following.

index = -1; // or set to known location value for definition ID idef

ierr = dgeom_def_get_xxx (idef, &index, &xxx);
ierr = dgeom_def_set_xxx (idef, &index, xxx);

where idef is the surface definition ID label, index_ is the definition location (which if it is not known
should be set to -1), and xxx is the name of the parameter. Only set the definition location to -1 before
the first call for a given surface definition ID. The parameter names are listed below.

ibc

Grid BC value.
For each of the following keywords there is a defined value (listed in
src/ug3/UG3_Grid_BC_def.h) for a given face/surface
that is used by both AFLR3 and AFLR4. Predefined AFLR grid BC values are listed below. Set
the ibc value equal to one of these keywords. If a grid BC value is not specified for a given
surface definition, then it is set to standard BL generating surface grid BC of -STD_UG3_
GBC.

FARFIELD_UG3_GBC 0 farfield surface
STD_UG3_GBC 1 standard surface
-STD_UG3_ GBC -1 standard BL generating surface
BL_INT_UG3_ GBC 2 symmetry or standard surface that intersects BL
TRANSP_SRC_UG3_ GBC 3 embedded/transparent surface converted to source

nodes
TRANSP_BL_INT_UG3_ GBC 4 embedded/transparent surface that intersects BL
TRANSP_UG3_ GBC 5 embedded/transparent surface
-TRANSP_UG3_ GBC -5 embedded/transparent BL generating surface
TRANSP_INTRNL_UG3_ GBC 6 embedded/transparent surface

converted to an internal surface coordinates are
retained but connectivity is not

-TRANSP_INTRNL_UG3_ GBC -6 embedded/transparent BL generating surface
converted to an internal set of coordinates that are
retained

Within AFLR4 the grid BC determines how automatic spacing is applied. There are four basic
grid BC types that are each treated differently.

1. Surfaces that are part of the farfield should be specified with a FARFIELD_UG3_GBC grid

BC. Farfield faces/surfaces are given a uniform spacing independent of other surfaces with
different grid BCs.

2. Surfaces that represent standard solid surfaces should be given either a STD_UG3_GBC

or -STD_UG3_GBC (BL generating) grid BC. Standard surfaces are given a curvature
dependent spacing that may be modified by proximity checking.

3. Surfaces that intersect a BL region should be given either a BL_INT_UG3_GBC or

TRANSP_BL_INT_UG3_GBC (transparent surface with volume mesh on both sides) grid
BC. A common example for the BL_INT_UG3_GBC grid BC is a symmetry plane.
Faces/surfaces set as BL intersecting surfaces are excluded from auto spacing calculations
within AFLR4 and use edge spacing derived from their neighbors.

4. Surfaces set as transparent surfaces will have a volume mesh on both sides. They can

have free edges and can have non-manifold connections to standard solid surfaces and/or
BL intersecting surfaces. Vertices in the final surface mesh are not duplicated at non-
manifold connections. Transparent surfaces use curvature driven surface spacing as used
on standard solid surfaces. However, at non-manifold connections with standard solid
surfaces they inherit the surface spacing set on the solid surface they are attached to. They
are also excluded from proximity checking. Typical examples of transparent surfaces
include wake sheets or multi-material interface surfaces. Note that any surface with free
edges is automatically set to a TRANSP_UG3_ GBC grid BC

icmp

Component ID identifier for given surface definition.
Component IDs are used for proximity checking. Proximity is only checked between different
components. A component is one or more surface definitions that represent a component of
the full configuration that should be treated individually. For example, a wing-body-strut-nacelle

configuration could be considered as four components with wing surfaces set to component 1,
body surfaces set to component 2, nacelle surfaces set to 3, and store surfaces set to 4. If
each component is a topologically closed surface/body, then there is no need to set
components. If component IDs are not specified, then component identifiers are set for each
body defined in an EGADS model or for a discrete definition, each topologically closed
surface/bodiy of the overall configuration. Proximity checking is disabled if there is only one
component/body defined. Note that proximity checking only applies to standard surfaces.
Component identifiers are set by one of three methods, chosen in the following order.

1. If the component identifier, icmp, is set for a definition then it is used.
2. If multiple bodies are defined in an EGADS model, then body index is used to set

component identifier.
3. For a discrete definition or an EGADS model with only one body, component identifiers are

set to an index based on topologically closed surfaces/bodies of the overall configuration.

mier

Isolated edge refinement flag for given surface definition.
An isolated interior edge is connected only to boundary nodes. Isolated edges are refined by
placing a new node in the middle of of the edge.
If mier = 0 then do not refine isolated interior edges on the surface definition.
If mier = 1 then refine isolated interior edges on the surface definition if the surface has local
curvature. Local relative curvature is defined using a factor multiplied by the deviation between
the location of a point in the middle of a surface mesh discrete edge and the location of the
same point on the actual surface.
If mier = 2 then refine all isolated interior edges on the surface definition.
Note that if not set then the isolated edge refinement flag is set to the global value mier4.

erw

Edge mesh spacing refinement weight for given surface definition.
Edge mesh spacing can be reduced on a given surface based on the discontinuity level
between adjacent surfaces on both sides of the edge. The edge mesh spacing refinement
weight is used as an interpolation weight between the unmodified spacing and the modified
spacing. A value of one applies the maximum modification and a value of zero applies no
change in edge spacing. Note that no modification is done to edges that belong to a farfield or
BL intersecting face/surface.

sf

Surface mesh spacing for given surface definition.
Curvature dependent spacing can be scaled on the surface by the value of the scale factor set.
If the scale factor is not set, then the default value is 1.0 (no scaling).

The following global parameters are not typically set by most users. However, they might be exposed
and allowed to be set by more advanced users interactively. Set the following parameters using
ug_set_int_param.

high_order_eval

Discrete geometry high-order evaluation flag.
If high_order_eval = 0 then evaluate discrete geometry using a linear approximation.
If high_order_eval = 1 then evaluate discrete geometry using a high-order approximation.
default=1 min=0 max=1

Set all others that follow using ug_set_double_param.

angdbe

Discontinuous boundary edge angle.
Angle between two adjacent boundary edge vectors used to identify edge discontinuities.
default=30 min=0 max=179.9

angerw1

Minimum discontinuous edge angle.
If the angle between the normal vectors for two adjacent faces of two different surface
definitions is greater than angerw1 then the edge between them is considered a minimum
discontinuity.
default=10 min=0 max=179.9

angerw2

Maximum discontinuous edge angle.
If the angle between the normals for two adjacent faces of two different surface definitions is
greater than angerw2 then the edge between them is considered a maximum discontinuity.
default=30 min=0 max=179.9

cdfr

Maximum geometric growth rate.
Used as the advancing-front growth limit. The element size for new nodes is limited to be less
than the physical size of the local front advanced from multiplied by cdfr. A cdfr value just
above 1.0 will produce a grid with optimal element quality. A value of cdfr well above a value of
1.0 will decrease the number of grid nodes generated and potentially decrease the element
quality.
default=1.1 min=1 max=3

curv_factor

Curvature factor.
For surface curvature the spacing is derived from the curvature factor and curvature radius.

Curvature = 1 / Curvature_Radius
Spacing = curv_factor / Curvature

The resulting spacing is limited by the minimum and maximum spacing set by min_scale and
max_scale. Note that if curv_factor=0 then surface curvature adjustment is not used.
default=0.1 min=0 max=1e+19

gtol

Relative glue tolerance.
This tolerance is relative to the local discrete edge lengths of the faces or edges attached to
the nodes/vertices being considered for gluing.
default=0.0001 min=0 max=1e+19

length_ratio

Curvature length ratio threshold.
The curvature length ratio threshold is used to determine spacing variation for curvature along
a curve. The curvature length ratio is defined as:

LR = [L(A,C) + L(C,B)] / L(A,B)
Where LR is the curvature length ratio and A, B, and C are points on the curve with point C
approximately at the mid-point between A and B. And, where L(A,B) is the straight line length
between A and B, L(A,C) is the straight line length between A and C, and L(C,B) is the straight
line length between C and B. Note that LR is always one or more. If LR > length_ratio then the
curve is recursively refined. The resulting spacing between points (limited by the minimum
spacing set by min_scale) is used to regenerate the edge grid along the curve.
default=1.0001 min=1 max=1.1

Integration of Alternative CAD Systems

As previously mentioned, AFLR4 includes an integration library of functions for EGADS and Open
CASCADE CAD system functionality. By default, the stand-alone version of AFLR4 registers and
uses these functions for CAD geometry definitions. Integration of an alternative CAD system requires
creation of equivalent functions to replace the built-in functionality. Several call back functions are
provided with AFLR4 to facilitate the integration. However, the CAD system specific functions must be
created to complete the integration. All functions are registered in the main program and the routines
included in src/aflr4/main serve as models for what needs to be integrated within another system to
use AFLR4 routines and register alternative CAD systems. All EGADS specific routines are within
#ifdef _ENABLE_EGADS_ blocks. In particular, the routine src/aflr4/main/aflr4_main_register.c
registers all of the functions required to integrate a CAD system. The routines being registered for
EGADS usage are the ones that have to be created to integrate another CAD system. A brief
description of each follows. All of these EGADS specific routines are located within directory
src/egads_aflr4 and should be used as a model to guide creation of the routines required for
integration of the alternative CAD system.

egads_auto_cad_geom_setup CAD geometry setup specific to automatic spacing (curve,
surface and proximity).

egads_cad_geom_add_ff Create and add a farfield to geometry. This routine is not
required if this functionality is not needed. If this is the case,
then simply do not register a routine.

egads_cad_geom_data_cleanup Cleanup all CAD system data allocated that is not controlled
by AFLR4.

egads_cad_geom_file_read Read a CAD system geometry file, load the model and
allocated CAD specific data. This routine is not required if
the system AFLR4 is being integrated within has the
capability to read and/or create the geometry elsewhere.

egads_cad_geom_file_write Write a CAD system geometry file. This routine is not
required if the system AFLR4 is being integrated within has
the capability to write or otherwise save the geometry
elsewhere.

egads_cad_geom_reset_attr Reset the AFLR4 attributes that can be attached to the CAD
model using data saved in the AFLR4 parameter structure.
Note that EGADS has the capability to attach arbitrary
attributes for AFLR4 and other systems. AFLR4 can use
these to setup the parameter structure. This data is also set
by default values and an argument vector with specific
options. If the alternative CAD system does not support

attributes, then all operations and EGADS functions related
to attributes can be ignored. In this case setup of the AFLR4
parameter structure would be dependent solely on setting up
the argument vector for AFLR4.

egads_cad_geom_setup Setup initial geometry surface definitions within the AFLR4 -
DGEOM surface definition structure. Also, setup topology
and extract CAD attributes for AFLR4 specific data, such as
grid BC and surface spacing related data.

egads_set_ext_cad_data Allocated the AFLR4 CAD data structure with data required
by the CAD system being integrated.

egads_eval_curv_at_uv Get surface curvature data at a given U,V coordinate
location for a specified surface definition.

egads_eval_xyz_at_uv Get X,Y,Z coordinates at a given U,V coordinate location for
a specified surface definition.

egads_eval_uv_bounds Get U,V coordinate bounds for a specified surface definition.
Note that if the CAD system uses trimmed surface definitions
then the bounds are for the complete surface definition not
the trimming curves. The bounds are used to detect
singularities in the surface definition

egads_eval_xyz_at_u Get X,Y,Z coordinates at a given T coordinate (arc length)
location on a specified curve.

egads_eval_edge_uv Get U,V coordinates on a specified surface definition at a
given T coordinate (arc length) location on a specified curve.

egads_eval_arclen Get arclength along a specified edge at a given U,V
coordinate location.

Creation of the routines for integration of an alternative CAD system typically requires a combination
of interpreting and understanding each of these routines along with a basic understanding of the
API’s for called EGADS routines (EG_*). A list of the EGADS APIs that are called follows.

EG_getTopology Used for EGADS model, body, face, loop, edge, local_edge, and node.
EG_getBodyTopos Used for EGADS body with SHELL, FACE, EDGE, and NODE.
EG_indexBodyTopo Used for EGADS body.
EG_effectiveMap Used for finding local UV coordinates with Effective Topology.
EG_getBoundingBox Used for model and face.
EG_getInfo Used for EGADS edge.
EG_evaluate Used for EGADS face and edge.
EG_getRange Used for UV coordinate transformation.

EG_getEdgeUV Used for EGADS face and edge.
EG_arcLength Used for EGADS edge.
EG_curvature Used for EGADS face.
EG_alloc Used for allocating EGADS data.
EG_free Used for all EGADS data.
EG_revision Used to output EGADS model revision.

EG_attributeAdd Used for EGADS attributes on model, face and edge.
EG_attributeRet Used for EGADS attributes on model, face and edge.

EG_getContext Used to add a farfield to an existing EGADS model.
EG_copyObject Used to add a farfield to an existing EGADS model.
EG_makeSolidBody Used to add a farfield to an existing EGADS model.
EG_makeTopology Used to add a farfield to an existing EGADS model.
EG_attributeDup Used to add a farfield to an existing EGADS model.

EG_close Used to cleanup EGADS model.
EG_open Used to read an EGADS file.
EG_loadModel Used to read an EGADS file.
EG_saveModel Used to save or write an EGADS file.
EG_deleteObject Used to delete an existing EGADS model.

EG_getTolerance Used to create and check an EGADS Tess object.
EG_initTessBody Used to create and check an EGADS Tess object.
EG_setTessEdge Used to create and check an EGADS Tess object.
EG_setTessFace Used to create and check an EGADS Tess object.
EG_statusTessBody Used to create and check an EGADS Tess object.

A complete description of the EGADS system, data, and APIs is contained in the EGADS overall
description and specification document (pdf) from MIT. This file along with source code and pre-built
binaries can be found at MIT’s Engineering Sketch Pad software distribution site.

AFLR4 Home

