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Abstract

In this paper, we present a novel modeling method for synthesizing
rough surfaces using discrete surface growth models. We employ a
two-pass method. Initial point cluster data is generated using dis-
crete simulation models derived from physical surface growth and
evolution. Then, a final surface is reconstructed from the point clus-
ters by a level set method. Since many rough surfaces in nature
are formed by deposition and diffusion processes, discrete models
simulating these processes can reasonably reproduce natural rough
surfaces. These discrete models are easy to implement and efficient
enough for interactive control. After generating initial data set from
the application of a discrete model, a level set method is used to ob-
tain implicit surface representations. This approach allows us to
easily handle complex surface topologies and compute intrinsic ge-
ometric properties of the surface if needed. We demonstrate that
our approach allows a flexible and general way to create various
rough surfaces.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Surfaces and object representation
; K.2 [Physical Sciences and Engineering]: Biology and materials
science

Keywords: Natural phenomena, Fractals, Particle system, Surface
representation, Implicit surface, Level set method

1 Introduction

Many surfaces in nature are rough. A rough surface can be de-
fined as a surface that has a fractal dimension. In fact, one measure
of roughness is the fractal dimension [1, 14]. Rough surfaces are
observed at all scales independent of their origin; for example, a
microscopic view of metal substrate, a cauliflower, ice, and moun-
tains are all rough at some level. Additionally, rough surfaces are
frequently generated by various technical processes, such as molec-
ular beam epitaxy (MBE).

Rough surfaces are also common in synthetic environments.
Techniques for realistic image synthesis have improved dramati-
cally. However, there is no easy solution for generating rough sur-
faces. The recent movieIce Ageproduced by Blue Sky Studios
is a good example. Although the synthetic ice world in the fea-
ture film was visually appealing, the computer generated ice mod-
els were not realistic enough to match the visual richness of natural
ice. Furthermore, the production process still requires much labor
and somewhatad hocmethods.

In materials science, numerous models have been developed to
study surface growth phenomena. In general, it is difficult to de-
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velop a viable continuum model of surface growth phenomenon and
then solve the resulting differential equations. Therefore, discrete
models play an important role in the prediction of surface growth
phenomena. A discrete model is defined as a system having dis-
crete variables with update rules. Since many rough surfaces in
nature are formed by deposition and diffusion processes, discrete
models simulating these processes can reasonably reproduce natu-
ral rough surfaces. Typical results from these simulations consist of
point clusters with nontrivial topologies.

For instance, consider the 2D simulation result using the diffu-
sion limited aggregation (DLA) cluster growth model in Fig 1. The
distribution of the islands and dendrites is unusual and cannot be
generated by traditional means. Also, in addition to fractal-like mi-
crostructures, prominent large-size structures are produced. There-
fore, a sophisticated methodology is needed to capture and repre-
sent complex surfaces. Explicit methods of representation using tri-
angulation will be unable to capture the complexity of the surfaces
in its entireity. Implicit methods do possess the capability to rep-
resent surfaces with complex topologies. However, it is necessary
to consider methods that provide variable amounts of smoothness.
Level set methods through appropriate choice of initial conditions
and front velocities can extract surfaces of differing smoothness
while preserving the underlying topology. Level set methods are
being increasingly used for reconstruction of smooth surfaces. We
consider their use for reconstruction of rough surfaces.

Figure 1: A fractal surface growth simulation: DLA

In this paper, we propose methods for generating rough surfaces
using discrete surface growth models. Our goal is to develop easily
controllable methods for generating rough surfaces for use in com-
puter graphics applications. We employ a two-pass method. A point
set is generated using discrete models based on surface growth and
evolution. Then, a final surface is captured by a level set method.
This two-pass process provides more flexibility to users by separat-
ing the surface extraction step from the data generation step. The



simple rule-based discrete simulations we employ here have several
advantages. First, the results are convincing since they are derived
from physical processes. Second, implementation is easy and the
computations using the methods are not expensive. Lastly, users
can exercise control by simply changing the discrete update rules.
After generating an initial data set from the application of a dis-
crete model, a level set method is used to obtain an implicit surface
representation. This approach allows us to easily handle complex
topologies and compute intrinsic geometric properties of the sur-
face. Higher resolution surfaces can be obtained by using denser
computational grids upon which the level set calculations are per-
formed. In addition, it is easy to deform the shape for animation
and combine several objects for an elaborated model.

Our paper is organized as follows. In Section 2, we review some
related efforts of rough surface generation. We then provide an
overview of our techniques in Section 3. Later, in Section 4 and 5,
we describe the details of surface growth models and surface ex-
traction method. In Section 6, we provide results that demonstrate
the potential of our approach and in the final section we draw con-
clusions and present a discussion of future work.

2 Related Work

The morphology of rough surfaces can be described by fractal mod-
els and concepts. Fractal models have been the major methods to
model natural surfaces to date. They are classified into one of the
following five approaches: Poisson faulting [14, 26], Fourier fil-
tering [14, 15, 26], midpoint displacement [7, 11, 16, 21], succes-
sive random additions [26], and noise synthesis [8, 16]. The Pois-
son faulting process is a sum of randomly placed step functions
with random heights, which generates a Brownian surface. Mus-
grave [18] compares these methods in a comprehensive way. How-
ever, all of them produce height field surfaces and cannot generate
arbitrary surfaces. In particular, these techniques cannot generate
surfaces of arbitrary genus as required by rough and amorphous
materials. These methods generate random fractals which are scale
invariant in a statistical sense. Global structures are hard to obtain
through the deployment of these techniques.

Procedural textures [3] can also be used to simulate a rough sur-
face. Lewis [12] suggested a solid noise synthesis algorithm for
surface texturing and stochastic modeling. Worley [28] obtained
good results using a cellular texture basis function for organic skin
and tiled stone. Fleischer [6] proposed a cellular development sim-
ulation to model organic surface details such as scales, feathers, or
thorns. The results are very promising; however, it is hard to devise
a cellular automata simulation and conversion functions to obtain
appropriate results.

Computer graphics researchers in the past have used deposition
concepts for different purposes. Musgrave performed random de-
position followed by surface relaxation to emulate thermal weath-
ering processes [18]. Fearing’s accumulation model [5] also em-
ployed similar ideas for modeling fallen snow. Finally, Dorsey used
fractal growth models such as random and ballistic depositions to
model weathering of metallic surfaces [4].

Implicit surface methods have been used to represent rough sur-
faces. Interesting and relevant efforts include Hart’s implicit rep-
resentation of rough surfaces [10] and Greene’s voxel space au-
tomata [9]. Hart derived implicit formulae for fractal representa-
tions. He generated wooden surfaces and blended them to demon-
strate the power of implicit representation. Greene simulated the
growth of plants in discrete volume.

The efforts we report here are different in several ways. The sur-
faces we produced are not just height fields. Additionally, our tech-
niques produce both microscopic and macroscopic structural varia-
tions. For example, DLA models allow the development of larger

gross structures. Further, we employ level set formulations to ex-
tract the final surfaces. It should be noted that, while researchers in
the physical sciences have used growth models for some time, their
results are mostly based on two-dimensional models. Thus, the ex-
traction of a three-dimensional growth surface is certainly novel as
reported here.

3 Overview of Rough Surface Generation

Our rough surface generation process consists of two modules: the
surface growth simulator and the surface reconstructor. The surface
growth simulator generates a point set based on user-specified ini-
tial conditions. The initial conditions depend on the surface growth
model and include parameters for update rules and the initial con-
figuration of the seed points. In this paper, we use two surface
growth models: random deposition with surface relaxation (RDSR)
and diffusion limited aggregation (DLA). While RDSR is a simple
local growth model, DLA is a nonlocal growth model. It was pre-
viously demonstrated that RDSR and DLA surfaces are fractal in
nature [1]. These fractals belong to the class of self-affine fractals,
which is invariant under anisotropic transformation. The surface
reconstructor captures surfaces from the results of the growth sim-
ulator and generates a surface representation such as a polygonal
model (See figure 2).

Surface Growth Simulator

Point set

Surface Reconstructor

3d graphic file:
OpenInventor, VRML

User Interface

Initial Conditon

Visualizer

Figure 2: Rough surface generator pipeline

Thus, our two-pass approach divides the problem into two well-
separated sub-problems. Each sub-problem has been studied in
many areas of science and engineering and, therefore, one can ex-
ploit many of the well-developed methods for these sub-problems.
We can use not only surface growth models from materials science,
but can employ any rule-based method if needed.

A level set method is used to obtain an implicit surface repre-
sentation. It is a computational technique for tracking evolving in-
terfaces and is used in a wide range of areas such as physics, ma-
terials science, and computer vision [24]. Our surface reconstruc-
tion method is based on a level set method proposed by Zhao [31].
In [31], an initial surface is continuously deformed toward a final
surface in a distance potential flow direction. The final surface
can be extracted as a polygonal model using the marching cube
method [13], then can be rendered with standard graphics software.



4 Surface Growth Simulation

We now describe two fractal surface growth models: random de-
position with surface relaxation (RDSR) and diffusion limited ag-
gregation (DLA). While RDSR is a local growth model, DLA is a
nonlocal growth model. DLA generates more diverse surfaces than
RDSR. More detailed descriptions of these methods and others can
be found in [1].

4.1 Random Deposition with Surface Relaxation
(RDSR)

We first explain the random deposition model (RD) because it eas-
ily leads to RDSR. RD is the simplest local growth model. From
a randomly chosen site over the surface, a particle drops vertically
until it reaches the top of the column under it, whereupon it is de-
posited (See Figure 3(a)). In RDSR, the deposited particle diffuses
along the surface up to a finite distance, stopping when it finds the
position with the lowest height (See Figure 3(b)). Due to the relax-
ation process, the final surface will be smoother than the one from
RD [1].

The most important difference between RD and RDSR is that
RDSR surface is correlated through the relaxation process. The in-
terface width is another measure for surface roughness, which is de-
fined by the root mean square fluctuation in the surface height. The
interface width grows indefinitely for RD surfaces, but saturates for
RDSR surfaces. RD surfaces look very rough and protrusive while
RDSR surfaces appear more natural and smoother.

A

A'

B'

B

(a) Random deposition

(b) Random deposition with Surface Relaxation

Figure 3: (a) RD model, (b) RDSR model

4.2 Diffusion Limited Aggregation (DLA)

DLA is the most widely-known nonlocal cluster growth model. The
working of the model is illustrated in Figure 4. A seed particle
is fixed at a site in the bottom plane. A second particle is then
released from a random position distant from the seed. It moves
following a Brownian trajectory or a Random Walk until it reaches
one of the four neighbor sites of the stationary seed whereupon it
sticks with some probability forming a two-particle cluster. Then, a
new particle is released which can stick to any of the five perimeter
sites of the two-particle cluster. This process is then repeated. The
diffusive effect is achieved through the use of Brownian motion of
particles and the release of particles from clusters.

The nonlocality of DLA is due to the shadowing effect generated
by the branches of the cluster. There is a much higher probability
that a new released particle will be captured by the outlying por-
tions of the cluster than in the interior regions. In other words, the
interior region is shadowed by the perimetric branches. (See Fig. 1)
Hence, the growth rate depends not only on the local morphology,
but also on the global geometry of the cluster. DLA can generate
various surfaces from dendritic structures to a moss-like structure
depending on the sticking probability and the nonlocal growth ef-
fect [22].

1
2

Figure 4: Growth model for DLA

5 Surface Reconstruction

We now explain our surface reconstruction algorithm using level set
methods. We mostly follow the level set formulation in [31]. Since
the method of [31] is targetted towards the reconstruction of smooth
surfaces, we employ a different potential flow for the reconstruction
of rough surfaces in the level set formulation.

5.1 Level Set Formulation

In general, the topology of the surface of point sets generated from
surface growth simulator is not simple. This makes explicit sur-
face representation almost impossible to implement. The level set
method is a powerful numerical technique for the deformation of
implicit surfaces. The level set formulation works in any number
of dimensions. The data structure is very simple and topological
changes are handled easily.

The level set method was originally introduced by Osher and
Sethian in [20] to capture evolving surfaces by curvature flow and
has been successfully used to track interfaces for wide variety of
problems. See [19, 24] for a comprehensive review. The two key
steps of the level set method are described below.

Embed the surface A co-dimension one surfaceΓ is defined as
the zero isosurface of a scalar (level set) functionφ(x), i.e.,
Γ = {x : φ(x) = 0}. φ(x) is negative insideΓ and pos-
itive outsideΓ. In practice, the signed distance function is
preferred as a level set function. Geometric properties of the
surfaceΓ, such as the normal and mean curvature can be eas-
ily computed fromφ(x) using:

outward unit normal: n =
∇φ

|∇φ| (1)

mean curvature: κ = ∇ · ∇φ

|∇φ| (2)

Embed the motion The time evolution PDE for the level set func-
tion is obtained by differentiatingφ(Γ(x, t), t).



φt +
dΓ(x, t)

dt
· ∇φ = 0 ⇔ φt + vn|∇φ| = 0 (3)

Here,vn is the normal velocity ofΓ(x, t) which may depend
on external physics or global, local, or geometric quantities.

To develop the level set PDE, one needs to extend the velocity,vn

in Eq. (3), which is given by the motion of the original surface. Let
S denote a point set. Defined(x) = distance function(x, S)
to be the closest distance between the pointx andS. We use the
convection model of a surfaceΓ in a velocity fieldv(x) described
by the PDE

dΓ(x, t)

dt
= v(Γ(x, t)). (4)

Then, we can naturally extend the convection to all level sets of
φ(x, t) to obtain

dφ

dt
= −v(x) · ∇φ (5)

While Zhao usedv(x) = −∇d(x) in [31], we usev(x) =
−d(x) because the computation of∇d(x) on a highly rough sur-
face is very unstable. Thus, the level set formulation of our convec-
tion model is

dφ

dt
= d(x)|∇φ|. (6)

5.2 Numerical Implementation

There are three key numerical elements in our surface reconstruc-
tion. First, a fast algorithm is required to compute the distance
function to an arbitrary data set on a rectangular grid. Second, we
are required to find a good initial surface for our level set PDE to
reduce the computational cost of solving the PDE. Third, we need a
fast and stable solver for the PDE. As shown in Fig. (5), we obtain
an initial surface,Γi by deforming the bounding surfaceΓ0 follow-
ing an approximate normal flow ofΓ0. Then, we deform the offset
surfaceΓi to get the final surfaceΓf by solving Eq. (6).

5.2.1 Computing the Distance Function

The distance functiond(x) to an arbitrary data setS is computed
by solving the following Eikonal equation:

|∇d(x)| = 1, d(x) = 0, x ∈ S. (7)

We use the algorithm in [31] that combines upwind differencing
with Gauss Seidel iterations of alternating sweeping orders to solve
the differential equation (7). In two dimension, the following up-
wind differencing is used to discretize Eq. (7),

[(di,j − xmin)+]2 + [(di,j − ymin)+]2 = h2 (8)

whereh is the grid size,n is the total number of grids,i =
1, . . . , n, j = 1, . . . , n, and

(x)+ =

{
x x > 0
0 x ≤ 0

and

xmin = min(di−1,j , di+1,j) ymin = min(di,j−1, di,j+1).

The solution for Eq. (8) satifies

min(xmin, ymin) < di,j ≤ min(xmin, ymin) + h.

Γ0

Γi

Γf

Deformation direction by tagging algorithm

Deformation direction by convection flow

Figure 5: Deformation methods,Γ0: an exterior bounding surface,
Γi: an initial surface for a level set solver,Γf : a final surface ob-
tained by a level set solver

Hence, the exact solution for the nonlinear Eq. (8) is given by:

di,j =

{
min(xmin, ymin) + h if δ ≥ h
xmin+ymin+

√
2h2−δ2

2
if δ < h

whereδ = |xmin − ymin|.
(9)

Then, the distance function is obtained by solving Eq. (8) on every
grid cell in the following four sweeping orderings:

(1)i = 1 : n, j = 1 : n (2)i = 1 : n, j = n : 1
(3)i = n : 1, j = n : 1 (4)i = n : 1, j = 1 : n.

Usually, the solution converges within five or six sweeps in two
dimension, and nine sweeps in three dimension. See [30] for details
and proofs.

5.2.2 Finding an Initial Surface

In our approach, we continuously deform an initial surface to the
final surface by following the convection flow direction. If we start
with an initial surface that is too far from the final shape, it will take
a long time to evolve the PDE. A good guess for the initial surface
helps to reduce the computational cost to get the final surface. A
good candidate of initial surfaces is an approximate offset surface
such that{x : d(x) = ε} whereε is an offset distance specified
by the user. To find such an approximate offset surface, we use a
simple tagging algorithm using a region growing method in discrete
space.

We always start from an initial exterior region such as a bounding
box. Every grid cell is initially tagged as interior, boundary, or
exterior. We denote the interior, boundary, and exterior region asΩ,
∂Ω, andΩ respectively. Letdij = d(xij) be the unsigned distance
of xij to the data setS. We sayxij > xkl or xij is farther thanxkl

or xij is larger thanxkl if dij > dkl. We deform the initial tagged
boundary∂Ω to the final tagged boundary using the simple tagging
algorithm in Alg. 1.

We maintain a priority queue for∂Ω so that the largest point
can be identified quickly. After tagging, we can obtain the signed



Algorithm 1 Tagging algorithm to find an initial offset surface,
d(x) = ε

Require: S ∈ Ω
ε: offset distance
while maximum distance of the tagged boundary≥ ε do

Pick the largest pointxij ∈ ∂Ω
if All interior neighbors ofxij are closer toS then

Add xij into Ω and Put its interior neighbors into∂Ω.
end if

end while
The final∂Ω is the offset surface.

distance function by negating the distance function at all interior
cells.

5.2.3 Solving the Level Set PDE

We can continuously deform the initial signed distance function,
φ(x), by solving the level set PDE (3). If we solve the PDE in a
brute force way, the computational cost isO(N3) at each time step

for the grid sizeN . The computational cost reduces toO(N
2
3 )

using the fast local level set method [23]. Instead of computing on
every grid cells, it is restricted to a narrow tube around the zero level
set(See Fig 6). Since the solution of Eq. (3) often becomes very flat
or steep at the frontΓ(t), a redistancing algorithm is needed to keep
φ(x, t) a signed distance function and smooth in a neighborhood of
the front. An upwind scheme is used for space discretization of Eq.
(3), and an essentially non-oscillatory Runge-Kutta scheme is used
for time approximation. Details for the discretization scheme can
be found in [20, 29].

Figure 6: Computation is only performed on the gray region(Tube:
T ) around the zero level setΓ

We outline the main algorithm.

1. Update tubes,T andN , where

T = {x : |φ(x)| < γ}
N = {(xi, yi) : min−1≤ν,µ≤1 |φi+ν,j+µ|| ≤ γ}.

Time advancing step is performed in tubeT , while the redis-
tancing step is performed in tubeN .

2. Advancing: Updateφ in tubeT for one time step to obtaiñφ
by an ODE time stepping method. Instead ofvn in Eq. (3),
c(φ)vn is used to prevent numerical oscillations at the tube

boundary, where the cut-off function,c(φ), is defined by:

c(φ) =





1 if |φ| ≤ β
(|φ|−γ)2(2|φ|+γ−3β)

(γ−β)3
if β < |φ| ≤ γ

0 if |φ| > γ
(10)

3. Redistancing: Apply the redistancing step toφ̃ on the tubeN .
Evolve the following Hamilton-Jacobi equation untild(x, τ)
reaches a steady state solutionds(x):





dτ + S(d)(|∇d| − 1) = 0,

d(x, 0) = d0(x) = φ̃(x, t),
S = d√

d2+|∇d|2h2

(11)

If d0 is already close to a distance function, the redistancing
operation usually takes only one or two iterations within the
tubeN .

4. Update the newφ by:

φ(x) =

{ −γ if ds(x) < −γ
ds(x) if |ds(x)| ≤ γ
γ if ds(x) > γ

(12)

6 Results

We use theVispacklibrary [27] to implement parts of the surface
reconstructor. The zero level set or the required implicit surface is
extracted by using suitableVispackroutines that invoke the march-
ing cube method [13]. The result is available as VRML output.
Since VRML is a common 3D format supported by many free and
commercial renderers, it provides a flexible choice to users depend-
ing on their needs. The computations were conducted on a SGI
workstation with MIPS R10000 processor and 1 GByte memory.
For 1003 computational grid, it takes 3-4 minutes to compute dis-
tance function and an initial surface respectively. It further takes
about 20 seconds for a first-order solver, and a minute for a second-
order solver to execute a time step of the level set march. We use
a second-order solver to obtain the presented results. Since we use
2-pass algorithm, we employ two computational grids: one is for
surface growth simulation, and the other is for surface reconstruc-
tion. From now on,g-grid stands for surface growth grid andr-grid
does for surface reconstruction grid.

Fig. 7 shows the deformation of the bunny model by the convec-
tion flow given by Eq. (6). The initial surface 7(b) is the approx-
imate offset surface from the true surface, i.e.{x : d(x) = hε},
which is obtained by the tagging algorithm 1. The initial surface
displays aliasing artifacts since the tagging algorithm is a proce-
dural rather than a numerical method. It should be noted that our
convection flow is good enough for rough surface characterization,
though the result is not as smooth as the one using the weighted
minimal surface model in [31]. In the weighed minimal surface
model, an additional curvature term regularizes the surface, which
is not desired for rough surfaces.

Fig. 8 shows a rough terrain. It is generated from a DLA sim-
ulation using a plane as a seed surface. The initial surface with
an offset ofε = 3 is used for all rough surface examples. Fig. 9
is another example from the DLA simulation with different initial
parameters. These examples demonstrate that our method can pro-
duce visually appealing natural scenery.

In Fig. 10, we show results generated by both a RDSR simu-
lation(Fig. 10(a)) and a DLA simulation(Fig. 10(b)) on a sphere.
Both surfaces are naturally rough and similar; it is noteworthy that
the DLA surface looks rougher. This specific result indicates that a
RDSR surface can be emulated by a DLA surface by choosing an



appropriate reconstruction grid. If the reconstruction grid resolu-
tion used is greater than the scale of the underlying surface struc-
ture, a smoother surface than the original surface will be obtained.
Therefore, the DLA simulation is preferred to RDSR. Also, ag-
gregated structures are generated which can never generated by a
RDSR surface.

Fig. 11 illustrates the generative power of our method. In this
example, various grids of different scales are used for a DLA sim-
ulation on the same sphere as the seed surface. While a global
dendritic surface is developed for a coarse grid, fine microstructure
on surface is generated for a fine grid. Further, this examples also
illustrate how well the level set method captures complex geometry
and topology including arches.

Finally, we show some results from a DLA simulation on various
objects as initial seed surfaces in Fig. 12. These examples indicate
that our technique can be used as a real surface texture generator. It
can be used as a form of displacement mapping without the typical
weaknesses of those methods.

7 Conclusion and Future Work

We present a new modeling technique for generating rough sur-
faces. The proposed modeling technique uses a fractal surface
growth model and a level set method to extract the surface. Our
method is flexible because of the modular design. Fractal surface
growth models generate surfaces that are naturally rough. They al-
lows users more control on the final surface characteristics. The
implicit representation with a level method allows the handling of
complex topology naturally. Thus, we obtain promising results by
combining these two methods.

A pressing problem is that some tiny holes are found in the re-
constructed surface. We believe that they are caused by the limi-
tation of the Marching Cubes algorithm, which does not guarantee
continuous contours. The problem can be fixed by using more ro-
bust and efficient isosurface algorithm [17]. Another immediate
problem is to control the roughness of the surface perhaps through
various parameters including interface width and the fractal dimen-
sion. Also, by simulating DLA on complex underlying surfaces,
we can produce more interesting results than the typical displace-
ment mapping method. We may use an image as the distribution
of initial seeds for DLA. It would be interesting to also consider
environmental factors such as gravitational force as well to control
surface growth.

A major disadvantage of the level set method is the computation
cost and the stability of the PDE solver. Fast and robust methods
with suitable tradeoffs for accuracy may be preferable for computer
graphics applications. It is likely that we will consider adaptive
and semi-lagrangian methods [25]. Finally, it would be useful to
add roughness on the level set function grid itself and applying a
viable physics-based velocity function such as a dendritic growth
of a Stefan problem [2].

Another limitation of our method is the rendering problem of the
reconstructed surface. Currently, we extract a polygonal represen-
tation from the implicit volume, then render it using a traditional
renderer. However, as the grid size becomes bigger, the polygon
model may get too large to handle. It would be more efficient to
render the surface in the implicit form.
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(a) point set (b) initial surface ofε = 17

(c) 100 iterations (d) 200 iterations

Figure 7: Deformation by the convection flow(r-grid:135× 134×
112

(a) a point set from DLA simula-
tion

(b) 30 iterations

Figure 8: DLA simulation 1 on a plane(g-grid:64×64×64, r-grid:
115× 115× 49)

(a) a point set from DLA simula-
tion

(b) 30 iterations

Figure 9: DLA simulation 2 on a plane(g-grid:64×64×64, r-grid:
115× 115× 75)



(a) RDSR on a sphere(r-grid:112× 115× 114) (b) DLA on a sphere(r-grid:139× 139× 139)

Figure 10: Comparison between RDSR and DLA simulation on a sphere

(a) g-grid:103 (b) g-grid:203

(c) g-grid:403 (d) g-grid:803

Figure 11: DLA surfaces generated by using different growth simulation grids on a sphere(r-grid:89× 91× 89)



(a) cactus:43× 95× 139 (b) torus:139× 40× 137

(c) knot:138× 139× 78 (d) mechanical part:61× 59× 139

Figure 12: DLA on various objects(All grid sizes are r-grid.)


