
Large-scale computational simulations
of physical phenomena produce enor-
mous data sets, often in the terabyte
and petabyte range. Unfortunately, ad-

vances in data management and visualization
techniques have not kept pace with the growing
size and complexity of such data sets. One para-
digm for effective large-scale visualization is
browsing regions containing significant features
of the data set while accessing only the data
needed to reconstruct these regions. To demon-
strate the feasibility of this approach, we are cur-
rently developing a prototype system, Evita—
exploratory visualization, interrogation, and
analysis.1 The cornerstone of this visualization
paradigm is a representational scheme that facil-
itates ranked access to macroscopic features in
the data set. 

We call the process of detecting those signifi-
cant features feature mining, and in this article,

we propose two paradigms for accomplishing this
task. Our intent with both approaches is to ex-
ploit the physics of the problem at hand to de-
velop highly discriminating, application-depen-
dent feature detection algorithms and then use
available data mining algorithms to classify, clus-
ter, and categorize the identified features. We
have also developed a technique for denoising
feature maps that exploits spatial-scale coherence
and uses what we call feature-preserving wavelets.

The large-data exploration methodology we de-
scribe can work for any data that can be trans-
formed to a multiscale representation and consists
of features that can be extracted through local op-
erators and aggregated in spatial, scale, and tem-
poral dimensions. The examples we present in this
article, however, demonstrate our feature mining
approach as applied to steady computational fluid
dynamics simulations on curvilinear grids.

Evita

The Evita system consists of three main
components: an offline preprocessor, a server,
and a client. The preprocessor takes the origi-
nal data set and its associated grid to produce a
compact representation. The compressed bit-
stream resulting from this offline preprocess-
ing is produced under a fixed priority schedule
that permits suitable visualization of the data
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set. The preprocessor organizes the bitstream
in terms of regions of interest. Each ROI is a cor-
related spatiotemporal region that contains a
physical feature with an associated ranking.
Thus, the preprocessor is essentially a feature
mining application that produces a significance
map delineating the ROIs.

When an Evita user begins data exploration
through the client system, the server initially
transmits a background. Then, according to a
feature-based priority schedule, it transmits in-
formation one feature at a time. Features appear
on the client system according to the priority
schedule and are incrementally refined over
time, resulting in a monotonic improvement in
the image quality. For each user-initiated change
in the viewpoint, the server generates a new pri-
ority schedule and transmits new ROIs. While
visualization is under way, the server accepts
real-time information from the client and dy-
namically reorganizes the bitstream to produce
the desired priority ranking. 

The final component of the system, the client,
decodes the reorganized bitstream arriving from
the server and produces the visualization. The
client can again extract features to gain further
insights into the data. 

The preprocessing stage requires the entire
data set. Given the local nature of the wavelet
and feature operators, the data can be accessed
by blocks or piecemeal. The system can also use
out-of-core and parallel execution to reduce ex-
cessive memory buffering of data during pre-
processing. However, for the actual client-dri-
ven exploration, buffering the entire data set is
not necessary. Only the data demarcated by the
view frustum is necessary; features can be ex-
tracted from that. Thus, exploration does not
require a large buffer space.

Several aspects of the Evita project have gen-
erated innovative research—for example, its em-
bedded and progressive encoding, server-client
architecture, and visualization interactors. In this
article, however, we will focus exclusively on how
Evita handles feature mining.

What is a feature?

Perhaps the most appropriate response to this
question is, “It depends on what you’re looking
for.” In general, a feature is a pattern occurring
in a data set that is of interest and that manifests
correlation relationships between various com-
ponents of the data. For instance, a shock in a
supersonic fluid flow would be considered a sig-

nificant feature: when a shock occurs, the pres-
sure increases abruptly in the direction of the
flow, and the fluid velocity decreases in a pre-
scribed manner. A significant feature also has
spatial and temporal scale coherence. In most
cases, an adequately resolved feature spans sev-
eral discrete spatial or temporal increments.

For many applications, generic data mining
techniques such as clustering, association, and
sequencing can reveal statistical correlations be-
tween various components of the data.2 Return-
ing to the shock example, we could use statistical
mining to ferret out associations, but it might be
difficult to attach precise spatial associations for
the rules discovered. A fluid dynamicist, how-
ever, would like to locate features with a rather
high degree of certainty. Such qualitative asser-
tions alone will not suffice.

This is where our approach to feature mining
comes in: we take advantage of the fact that, for
simulations of physical phenomena, the field
variables satisfy certain physical laws. We can ex-
ploit these kinematic and dynamic considera-
tions to locate features of interest. The resulting
feature detection algorithms, by their very na-
ture, are highly application-specific. However,
the fidelity improvements garnered by tailoring
these highly discriminating feature detection al-

Other Feature-Mining Work
In many ways, our approach and framework parallel those of

Kenneth Yip and Feng Zhao.1 Spatial aggregation is the cornerstone
of their approach. All points belonging to an identified region are
aggregated to form a subdomain or a region of interest. They
propose frameworks that facilitate imagistic reasoning and allow
construction of frameworks for imagistic solvers. In our
framework, features are extracted as simplicial entities (for exam-
ple, points, lines, regions); we rely on the visceral potency of visu-
alization algorithms to gain insights. 

Yip and Zhao use aggregation and task-specific classification to
create an explicit neighborhood relationship graph. Their
approach uses redescription to conduct aggregation at higher
levels of abstraction. On the other hand, we exploit aggregation,
classification, and other tasks (denoising, tracking, and so on) to
facilitate exploration of large data. 

Furthermore, many of the examples described by Yip and Zhao
are for 2D scalar fields; we’ve chosen our examples from more
complex flow problems.

Reference
1. K. Yip and F. Zhao, “Spatial Aggregation: Theory and Applications,” J. Artificial

Intelligence Research, vol. 5, Aug. 1996, pp. 1–26.
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gorithms to the particular application far out-
weigh any loss of generality. In this context, fea-
ture detection is, in essence, a data mining task. 

The state of the art in feature detection and
mining in simulation data is similar to what ex-
isted for image processing when edge detection
methods were the main techniques. Much more
is now understood, and mining in images is often
done in terms of the features, namely edges.
This suggests that a blend of data and feature
mining methods might have the potential to re-
duce the burdensome chore of finding features
in large data sets.

Feature detection algorithms

In this section, we describe two distinct fea-
ture detection paradigms. The common thread
is that both are bottom-up feature constructions
with underlying physically based criteria. The
two perform essentially the same steps, but in
different order. As will become evident, it is un-
likely that non-physics-based techniques would
provide the fidelity needed to locate complex
flow field structures. 

The feature we’ll focus on is the vortex. (For
an excellent review of vortex detection tech-
niques, see Martin Roth.3) We all have an intu-
itive, informal understanding of what a vortex
is—a swirling flow pattern around a central
point. However, the primary challenge associ-
ated with vortex detection is that there is no clear
definition of a vortex. Here is one of the litera-
ture’s clearest:

A vortex exists when instantaneous streamlines
mapped onto a plane normal to the vortex core
exhibit a roughly circular or spiral pattern, when
viewed from a reference frame moving with the
center of the vortex.4

Unfortunately, this definition is self-referen-
tial—you have to know certain properties about
a particular vortex to be able to detect it. For
steady 3D flow, the vortex’s orientation is, in
general, unknown; for unsteady flows, the ve-
locity of the “reference frame moving with the
center of the vortex” is likewise unknown. The
underlying difficulty with this definition lies in
its global nature. To use this definition, you must
know the orientation and velocity of a planar
surface moving through space. Furthermore,
you must be able to deduce streamline patterns. 

Now we’ll show how to apply our two differ-
ent feature detection paradigms to vortical flows.

Point classification techniques
The first feature detection paradigm, which

we call point classification, requires several oper-
ations in sequence:

1. Detection by application of a local sensor at
each point in the domain

2. Binary classification (verification) of points
based on some criteria

3. Aggregation of contiguous regions of like-
classified points

4. Denoising to eliminate aggregates that are
of insufficient extent, strength, and so on

5. Ranking based on feature saliency

This approach identifies individual points as be-
longing to a feature and then aggregates them to
identify regions that are features. The points are
obtained from a tour of the discrete domain and
can be in many cases the vertices of a physical
grid. The sensor used in the detection phase and
the criteria used in the classification phase are
physically based point-wise characteristics of the fea-
ture of interest. (We could also track these regions
in the temporal dimension, but in this article we’ll
restrict our attention to feature extraction.) 

Now let’s look at a vortex detection technique
that uses the point classification approach. This
technique uses the eigenvalues of the local ve-
locity gradient tensor.5 Under a limited set of
conditions, swirling flow is characterized by re-
gions where the eigenvalues of the velocity gra-
dient tensor are complex. Carl Berdahl and
David Thompson defined a swirl parameter that
estimates “the tendency for the fluid to swirl
about a given point.”5 The value of this parame-
ter is

,

where Im(λ1,2) is the imaginary part of the com-
plex conjugate pair of eigenvalues, Vconv is the ve-
locity in the plane whose normal is the real
eigenvector, and L is the characteristic length of
the swirling region. The swirl has a nonzero
value in regions containing vortices and attains a
local maximum in the core region.

In this point classification algorithm, the de-
tection step consists of computing the eigenval-
ues of the velocity gradient tensor at each field
point. The classification step consists of check-
ing for complex eigenvalues and assigning a swirl
value if they exist. The aggregation step then de-

τ
λ

=
( )Im ,1 2 L

Vconv
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fines the region containing the vortex.
This method’s primary shortcoming is that

it—and all eigenvalue-based vortex detection
techniques—can generate false positives. Its lo-
cal nature makes it unable to discriminate be-
tween locally curved streamlines and closed
streamlines characteristic of a vortex. Other fea-
tures, such as shocks, are more amenable to the
point classification framework.

Aggregate classification techniques
We can best incorporate the global informa-

tion needed to define a vortex into our second
feature detection paradigm, the aggregate classifi-
cation approach. Aggregate classification follows
a somewhat different sequence of operations:

1. Detection by application of a local sensor at
each point in the domain

2. Aggregation of contiguous regions of prob-
able candidate points

3. Binary classification (verification) of each
aggregate based on some criteria

4. Denoising to eliminate aggregates that are
of insufficient extent, strength, and so on

5. Ranking based on feature saliency

This approach identifies individual points as
being probable candidate points in a feature and
then aggregates them. The classification algo-
rithm is applied to the aggregate using physically
based regional criteria to determine whether the
candidate points constitute a feature.

We have recently developed an aggregate clas-
sification vortex detection technique.6 We based
its detection step on an idea derived from a
lemma in combinatorial topology: Sperner’s
lemma states, “Every properly labeled subdivi-
sion of a simplex σ has an odd number of distin-
guished simplices.”7 In other words, given a con-
vex set in n dimensions, triangulate it into

subtriangles and assign to each vertex of the sub-
triangles a label from 1, 2, ..., n + 1. If the initial
vertices of the convex set are completely labeled,
then there exist an odd number of completely la-
beled subtriangles within the convex set. A sub-
triangle is completely labeled if it receives all n +
1 labels. 

The idea behind Sperner’s lemma is to deduce
the properties of a triangulation based solely on
the labeling of the vertices. In a dual fashion, this
approach deduces the behavior of a vector field
based solely on the labeling of the velocity vec-
tors. In particular, velocity vectors around core
regions exhibit certain flow patterns unique to
vortices, and it is precisely these flow patterns
that we search for in the computational grid.
Not surprisingly, our approach is related to crit-
ical point theory. A critical point is a point at
which the velocity is zero—that is, where the lo-
cal slope of the streamline is undefined. How-
ever, critical points alone are not sufficient to de-
tect a vortex.

For each grid point, our algorithm examines
its four immediate neighbors in 2D—six in
3D—to see whether the neighboring velocity
vectors point in three or more direction ranges
(that is, to see if they form a complete triangle).
3D vortex core regions are much more difficult
to detect than their 2D counterparts: to do so,
we must identify a core direction (the normal to
a plane) and apply our 2D algorithm to the
neighboring vectors projected onto that plane.
We call this plane the swirl plane because instan-
taneous streamlines projected onto it exhibit a
swirling pattern. 

Figure 1a shows the 2D algorithm on a 2D
structured grid with the detected core region
colored gray; Figure 1b shows the 3D algorithm,
along with the swirl plane, and the complete
tetrahedron A, B, C, E. Potential candidates for
the core direction vector include the vorticity
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algorithm: (a)2D algorithm and
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vector and the eigenvector corresponding to the
real eigenvalue of the velocity gradient tensor.

The final point to consider in the detection
step is the issue of direction quantization. Direc-
tion quantization refers to the number of possi-
ble direction ranges in which a vector can
point—that is, the number of possible labels a
vector can receive. Given a continuous vector
field defined on a discrete 2D grid, it is not al-
ways sufficient to use only three direction ranges
to label the vectors. For the cases considered to
date, four direction ranges have proved suffi-
cient. An added benefit of direction quantization
is that it makes the 3D algorithm relatively in-
sensitive to the core direction, and approximate
core directions can be just as effective as exact
core directions.

Our technique segments candidate core re-
gions by aggregating points identified from the
detection phase. We then classify (or verify)
these candidate core regions based on the exis-
tence of swirling streamlines surrounding them.
(For features that lack a formal definition, such
as the vortex, we must choose the verification
criteria so that it concurs with the intuitive un-
derstanding of the feature. In this case, verifying
whether a candidate core region is a vortex core
region requires checking for any swirling
streamlines surrounding it.) Checking for
swirling streamlines is a global (or aggregate) ap-
proach to feature classification (or verification)
because swirling is measured with respect to the
core region, not just individual points within the
core region.

In two dimensions, checking for swirling
streamlines is fairly straightforward. Using oper-
ators from differential geometry, we can measure
swirling by computing a streamline’s winding an-
gle with respect to a candidate core region. The

winding angle is a measure of the total curvature,
or the signed angle of rotation, of a planar curve
with respect to a reference point. Therefore, a
winding angle of 2πmeans that the planar stream-
line has completely swirled around the candidate
core region, making it the natural choice for the
classification criteria in two dimensions.

In three dimensions, however, checking for
swirling streamlines is much more difficult, be-
cause we cannot extend the winding angle oper-
ator into higher dimensions, and vortices in
three dimensions can exhibit geometries that
bend or twist in various different ways. To ad-
dress these issues, our verification algorithm
computes the tangent vector and probe vector
for each point along the streamline. The probe
vector is oriented to point at or near the core re-
gion, and it retrieves the core direction vector
from that location. The algorithm locally aligns
the retrieved core direction vector with the z-
axis and then applies the same transformation to
the tangent vector. Essentially, the purpose of
this alignment step is to locally straighten any
curved vortices along the z-axis. The algorithm
then projects the transformed tangent vector
onto the (x, y)-plane; therefore, if the streamline
is swirling, the projected tangent vectors make
a complete revolution in the (x, y)-plane. Thus,
the classification criterion in three dimensions
is a signed angle of rotation of 2π, in the (x, y)-
plane, by the projected tangent vectors.

Examples
Now we’ll demonstrate the two techniques

we’ve discussed by applying them to a compli-
cated, delta-wing flow field that has undergone
vortex burst—a condition characterized by the
rapid expansion of the vortex. Figure 2 shows
two views of the isosurfaces of the point classi-

Figure 2. Point-based vortex de-
tection algorithm applied to a
delta wing with vortex burst.
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fication–based swirl parameter, with the complex
structures of the burst vortex clearly evident. 

Figures 3 and 4 show results generated using
the aggregate classification technique. Figure 3a
shows the candidate core regions. The yellow
aggregated regions are those identified by the
classification step as being actual cores; the green
aggregated regions failed the verification step.
Figure 3b shows the verified core regions en-
closed in swirling streamlines. Figure 4 illus-
trates the verification technique. The cyan vec-
tors in the upper image are the streamline
tangents, and the orange vectors are the probe
vectors. The probe vectors interrogate the core
region for the local core direction vector. The
bottom image shows that the projected tangent
vectors satisfy the 2πswirling criterion. 

Wavelet-based denoising

Once we have obtained a feature map, the next
step is to filter and rank the ROIs systematically.
The visualization process should not accord sig-
nificance to features that are weak or of small spa-
tial extent. In addition, certain types of features
require several grid points for the simulation to
adequately resolve them; the visualization should
also ignore features that don’t meet this criterion.
Our basic strategy, which eliminates all these in-
significant features, is to accord ROI status only
to features that persist over several spatial scales.
In other words, we exploit the scale coherence of
significant features to determine whether a de-
tected feature is, in fact, an ROI. 

Once we have denoised the feature map, we
can rank the remaining ROIs according to ap-
propriate criteria—for example, size, strength,
average strength, and so on. A scale space gen-

erated by the wavelet transform is even more at-
tractive. Features of small spatial extent, possi-
bly noise, populate the finer scales. However,
true features populate several scales. Because our
data exploration system employs the wavelet
transform, using scale-based denoising was a
natural choice. Another study, which used masks
derived from the swirl operator to ascribe a
saliency, showed that scale space denoising is
more powerful than spatial methods that employ

Figure 3. Aggregate-based vor-
tex detection algorithm applied
to a delta wing with vortex
burst: (a) yellow candidate core
regions are actual, green are
false; and (b) verified core
regions.

Figure 4. 
Verification
process for
primary 
vortex, 
aggregate
classification
technique.

(a) (b)
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size or value as a criterion for rejecting regions as
feature-poor.8 Thus, we rank regions by mea-
suring the persistence of features in the discrete
scale space.

Multiscale representation
To obtain a multiscale representation of the

feature map, we apply a discrete wavelet trans-
formation (DWT) to the grid and the field data.
Because we are interested in the presence of fea-
tures in a multiscale representation of the data,
we do not apply the wavelet transform directly
to the feature maps but, instead, to the field data
itself. We then apply the feature detection algo-
rithm at each scale to generate scale-dependent
binary maps. Then, we combine the binary maps
at each scale to generate a single denoised binary
map. Because many feature detection algorithms
are based on gradients of the field variables, it is
critical that the wavelet transform not introduce
spurious features. 

Although denoising the data might seem to be
independent of the application, we contend that the
denoising procedure itself should preserve certain
feature characteristics. For generality, we use phys-
ical characteristics including position, shape, and
strength (or geometrical characteristics) instead of
the features’ dynamical properties. Our objective is
to employ what we term feature-preserving
wavelets to generate a multiscale representation of
the data. We consider a wavelet feature-preserving
if it does not distort geometrical characteristics.
Many commonly used wavelet functions do not ex-
hibit favorable feature preservation characteristics.
For example, deriving a coarser version of a func-
tion can introduce new extrema that can lead to the
detection of spurious features.

Elsewhere, we’ve outlined the design of a fam-
ily of functions that satisfy certain feature preser-
vation properties in a multiscale setting.9 We im-
plement these functions as the low-pass analysis
filter in a two-channel filter bank. We use a fac-
torization method to determine the other com-
ponents of the filter bank. Because our focus
here is feature mining, we will not elaborate fur-
ther. However, we do stress that it is important
to choose appropriate transforms for feature
mining applications. The two wavelets we chose
for this application were the linear lifting
scheme10 and a newly developed lifting imple-
mentation of a feature-preserving total variation
diminishing (TVD) wavelet.9

Significance map generation
We’ve already obtained the significance or fea-

ture map from either the point classification or
the aggregate classification feature mining algo-
rithm. Now we convert this map to a binary
form, with a 1 signifying the presence of a fea-
ture at a grid point.

The multiscale procedure for generating a ro-
bust, denoised significance map is as follows. We
update the map at the finer scale j using the map
at the lower, or coarser, scale j – 1. Because of
the 2D wavelet transformation’s dyadic nature,
each grid point (l, k) in scale j – 1 corresponds to
point (2l, 2k) in scale j. Therefore, if a cell in the
coarser scale j – 1 is defined by grid points (l, k),
(l + 1, k), (l + 1, k + 1), and (l, k + 1), the corre-
sponding cell in the finer scale j is defined by (2l,
2k), (2l + 2, 2k), (2l + 2, 2k + 2), and (2l, 2k + 2). 

The rules for updating scale j using scale j – 1
are as follows: 

• If the map at any of the grid points in scale j –
1 is a 0, make the map at the corresponding
grid point in scale j a 0.

• If both the grid points on an edge of the cell
in scale j – 1 are 0s, make the map at the mid-
point on the corresponding edge in scale j a 0.

• If all four grid points in a cell are 0s in scale j –
1, make the map 0 at the midpoint of the cor-
responding cell in j.

Apart from these changes, the rest of the grid
points on the map remain unmodified. Thus,
features that did not percolate down to the lower
scale are marked with 0s. Because we have added
no 1s, we haven’t created any new features. We
apply this procedure recursively over two or
more scales—that is, we use a denoised map at a
lower scale to denoise the higher scale.

Examples
We implemented and tested a 2D version of

this approach using a section of the Naval Lay-
ered Ocean Model Pacific Ocean data set.11 Fig-
ure 5a shows the original binary swirl map. Fig-
ure 5b shows the swirl map obtained after
denoising using the linear lifting wavelet; Fig-
ure 5c shows that obtained after denoising using
a feature-preserving TVD wavelet. 

Although it is evident that both filters remove
pixels from the maps, visual inspection does not
provide a clear indication of the denoising algo-
rithms’ relative merits. Of 339 original features,
feature-preserving wavelet denoising removed
82 features in one level of transform, 116 fea-
tures in two levels, and 158 features in three lev-
els. On the other hand, the linear lifting wavelet
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eliminated 67, 105, and 150 features for one,
two, and three levels of transform. 

Obviously, the feature-preserving wavelet
eliminated more features than the linear lifting
wavelet. What is interesting, however, is the
manner in which elimination occurred. Figures
6a and 6b show the distribution of features in the
original data and after one, two, and three lev-
els of denoising for the linear and feature-pre-
serving wavelets. We categorized features using
their average swirl (using log10τ). In general, both
wavelets do a good job of eliminating weaker
features (τ < –2.5). However, even though the
feature-preserving wavelet eliminates more fea-
tures, it preserves more of the strongest features
as measured by average swirl (τ > –1.5). Our in-
terpretation is that the feature-preserving
wavelets do a better job of preserving the signif-
icant features. We can now rank the remaining
features using a criterion such as average swirl.

The basis of our efforts to improve fea-
ture mining algorithms is the asser-
tion that, for physics-based simula-
tions of complex phenomena, we

should exploit the inherent relationships be-
tween the various components of the data. Tra-
ditional data mining algorithms alone cannot
guarantee success. In cases where we understand
the underlying physics, at least at some basic
level, it makes sense to exploit the known corre-
lations whenever possible. Taken together, ap-

plication-specific feature detection algorithms
and application-independent techniques from
traditional data mining provide an arsenal that
offers much promise in solving the problem of
effective exploration of large data sets.

Figure 5. Wavelet-based denoising: (a) original binary swirl map, (b) map after denoising with the linear
lifting wavelet, and (c) map after total variation diminishing denoising.
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