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Abstract 
 
A novel algorithm to extrude smooth, near-body volume meshes from surface 
meshes of arbitrary topology is presented. These meshes are classified as 
generalized meshes because multiple element topologies may be present within 
the same mesh. The algorithm utilizes a three-step, parabolic scheme based on 
the Poisson equation used in structured grid generation to extrude the volume 
mesh. Several preliminary example meshes are included to demonstrate the 
efficacy of the approach. 
 
 
Introduction 
 
Mesh generation operates fundamentally by distributing points throughout the 
volume of a physical region, as well as on its bounding surfaces.  Connection of 
the points forms the mesh and subdivides the physical region into a filling set of 
discrete volume elements.  Structured grids [1]-[5] and unstructured meshes [6]-
[8] have been used successfully to solve a wide range of problems in 
computational field simulation. Each of these mesh types has advantages and 
disadvantages that have been well documented. It seems apparent that no single 
mesh type can simultaneously address the conflicting requirements of solution 
accuracy, computational efficiency, and automation of the grid generation 
process.  
 
An alternative to uniform-topology meshing is the so-called hybrid grid method 
[9]-[12]. Elements of hybrid grids are not required to be of the same topological 
type. Typically, hybrid grid methods employ structured quadrilateral- or 
unstructured, triangular-element meshes to discretize interior bounding surfaces. 



These surface meshes are then extruded into the domain forming a region of 
hexahedral or prismatic cells, respectively. Tetrahedra are used to fill the 
remaining voids in the domain. In the case of hexahedral near-body elements, a 
pyramidal transition layer is required to provide the triangular faces necessary 
for the tetrahedral mesh generation. Hybrid grids are attractive because of their 
flexibility with respect to automation as well as feature resolution through the 
use of anisotropic elements. Additionally, hybrid topologies require significantly 
fewer elements than unstructured meshes to achieve the same degree of 
resolution [9].  
 
However, most hybrid grid generation technologies require that the surface 
discretization be uniformly of the same topological type. If an isotropic 
triangulation is used, an excessively large number of faces may be needed to 
adequately discretize the surface thereby affecting solution efficiency. If 
structured quadrilaterals are used, a manual surface decomposition must be 
performed that may require significant effort.  
 
In this paper, we present an approach combining elements of both structured 
grid and unstructured mesh generation that we categorize as generalized mesh 
generation [13]-[15].  The generalized mesh topology places no restriction on 
the number of edges used to define a face or the number of faces used to define 
a cell. The advantage of using this topology is that mesh elements may be used 
that are topologically appropriate for the region being discretized. In this 
context, we define topologically appropriate as simultaneously meeting the 
requirements of solution accuracy, computational efficiency, and automation of 
the grid generation process. As with hybrid grids, a near-body mesh is generated 
by extrusion followed by a tetrahedral mesh generation to fill voids remaining in 
the domain. 
 
Here we focus on the generation of the near-body mesh using the extrusion 
technique described in [14] and [15] modified to permit the surface meshes to be 
of arbitrary topology. The algorithm utilizes a parabolic marching scheme [3]-
[5] to extrude the mesh in layers starting from an initial surface mesh. An 
approach of this type seems to have been first suggested by Steger [16] using 
hyperbolic equations. Hyperbolic grid generation equations were used by 
Matsuno [17] to extrude a prismatic volume mesh from a triangular surface 
mesh with only limited success. A mixed hexahedral/prismatic, near-body grid 
generation algorithm was employed by Wey for generating Chimera grids [18]. 
In [18], an unstructured quadrilateral/triangle surface mesh was extruded into 
the domain after the surface normals used for extrusion were smoothed.  In this 
effort, we have employed a modified form of Knupp’s approach [19] for 
applying Winslow smoothing [20] to the extruded mesh of arbitrary topology.  



Near-Body Mesh Generation 
In the near-body, generalized mesh generation algorithm presented here, the 
mesh is extruded in layers starting from an initial surface mesh of arbitrary 
topology. Generation of the mesh within each layer is accomplished using a 
modification of the parabolic mesh generation strategies developed for 
structured meshes [3]-[5] and semistructured meshes [14][15] and can be 
described as a three-step process: 
 
• A three-level, locally orthogonal, reference mesh is generated by extrusion 

of the initial surface mesh in the direction of the local surface normal 
following a prescribed distance distribution. The reference mesh consists of 
the initial data surface for the layer and two extruded surfaces. 

 
• The intermediate level of the reference mesh is iteratively smoothed using 

the Poisson smoothing equations from structured grid generation. The third 
level of the mesh is adjusted after each iteration to reflect the changes in the 
surface normals of the second level as it is smoothed. 

 
• The third level of the reference mesh is then discarded and the second level 

is used as the initial data surface for the next layer. The process is then 
repeated. 

 
The resulting smoothed mesh still exhibits many of the characteristics of the 
reference mesh. In this respect, it is fair to characterize the mesh as nearly 
orthogonal. The greatest deviation from orthogonality occurs where the 
smoother has done the most work. Typically, this occurs in regions where grid 
lines emanate from concave or convex regions of the initial surface.  

Poisson Smoothing 
One unique feature of this approach is the use of the Poisson grid generation 
algorithm to smooth the surfaces of the mesh as the extrusion proceeds. 
Laplacian smoothing is typically used to smooth the extruded surfaces [11]. 
Using the Poisson equation as the smoothing mechanism, while not as resistant 
to mesh folding as Winslow smoothing [19], allows the use of control functions 
to influence the spacing of points on the extruded surface. As shown in [14] and 
[15], the control functions play an important role in determining the quality of 
the extruded structured mesh.  
 
In structured grid generation [1], a global transformation of the form 
 

 )z,y,x(),z,y,x(),z,y,x( ζ=ζη=ηξ=ξ  (Eq. 1) 



is typically employed and the inverse transformation is assumed to exist. 
Assuming that ζ is the marching (extrusion) direction and that ζ lines are 
orthogonal to the extruded ζ=constant surface, the Poisson equation commonly 
used for structured grid generation becomes 
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(Eq. 2) 

 
where r(x,y,z) is the position vector, Φ, Ψ, and Θ are the control functions for 
the ξ, η, and ζ directions respectively, and the metrics g11, g12, g22, g33, and g are 
defined in the usual manner [1]. Note that the two-dimensional grid generation 
equations appear in parentheses in the first line of Eq. 2. In a structured grid 
generation algorithm, the partial derivatives appearing in Eq. 2 are approximated 
using standard second-order central differences. Clearly, an alternative approach 
is necessary if the Poisson equation is to be used for smoothing meshes of 
arbitrary topology. 
 
Knupp [19] describes an approach for applying the original Winslow smoother 
[20], which was developed for a structured triangular mesh having six-valent 
nodes, to a two-dimensional mesh of arbitrary topology. Here we include the 
control functions so that mesh quality may be improved. As noted in [19], if a 
Laplace-type equation is to be used for smoothing an unstructured mesh, the 
notion of a global coordinate transformation must be abandoned. Using the 
notation of [19], a local, discrete, uniform logical space (ξm,ηm) is defined at 
each node  
 
 mmmm sin,cos θ=ηθ=ξ  (Eq. 3) 

 
where M/m2m π=θ , M is equal to the number of valent nodes, and 

m=0,1,…,M-1. Approximations for the partial derivatives fξ, fη, fξξ, fηη, and fξη 
for a generic function f are given in [19] for the necessary valent node 
combinations. 
 
It should be noted that Knupp's approach cannot directly be extended to three 
dimensions for general unstructured meshes since the necessary logical space 
cannot be defined. However, since we are dealing with meshes generated by 
extrusion, the resulting underlying structure of the extruded mesh can be 
exploited to evaluate the derivative terms in the direction of extrusion, i.e., the ζ 
derivatives, using standard finite-difference approximations. The remaining 



derivative terms in Eq. 2 are approximated using Knupp’s approach. Currently, a 
simple Jacobi iteration is used to solve the resulting system of equations. 

Control Functions 
One advantage of using the Poisson mesh generation equations is that many of 
the important results from elliptic grid generation, in particular those associated 
with the control functions, can be employed to generate high quality grids 
[14][15]. The form of the control functions used here does not include curvature 
effects [21] and is given by 
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(Eq. 4) 

 
The strategy currently employed is to compute the control functions Φ and Ψ 
once using values from the initial surface mesh. The control function Θ is 
computed for each layer using the specified marching distance distribution. 
Additionally, all derivatives appearing in Eq. 4 must be evaluated using the local 
coordinate system at each point.  

Additional Smoothing 
On occasion, it has been found that, when using the parabolic marching scheme, 
adding dissipation to the Poisson smoothing equation (Eq. 2) is necessary, 
particularly when generating meshes in strongly nonconvex regions [14][15]. 
The approach employed here is described in detail in [22] and is similar in spirit 
to the approach taken by Chan and Steger [2]. 

Sample Meshes 
To provide a demonstration of the efficacy of this approach, several preliminary 
three-dimensional meshes are included. These examples were chosen to 
illustrate the characteristics of the smoothing algorithm. Before extruding from 
the initial surface mesh, a check is performed to ensure that all faces are defined 
in a consistent clockwise direction so that the direction of extrusion is properly 
defined. In the examples shown below, the marching distance distribution is 
defined using a hyperbolic tangent stretching function. For purposes of 
improved visual clarity, the meshes included here were generated using a small 
number of points. The volume mesh is stored in the Cobalt60 mesh format [23]. 
Included are the cell connectivity information, the physical coordinates of each 
vertex, and a boundary flag. The EnSight software package [24] with the 
Cobalt60 reader was used to visualize the mesh. 



The first sample mesh is for a simple bump. The surface mesh defining the 
bump was a structured, 31x21 quadrilateral grid. Figures 1 and 2 show two 
different views of the mesh. The smoothing algorithm was applied 10 times in 
each layer. The mesh appears smooth. As shown in Figure 2, the mesh exhibits 
clustering of lines emanating from concave regions of the surface and 
divergence of lines emanating from convex regions. Both behaviors are 
characteristic of meshes generated using marching methods. In general, the 
mesh retains its nearly orthogonal nature. 
 
 

  
Figure 1. Isometric view of simple 

bump mesh 
Figure 2. Cutaway view of simple 

bump mesh 
 
 
Figures 3, 4, and 5 show the mesh generated around a body of revolution based 
on notional Apollo command and service modules. The initial surface mesh was 
defined using 1580 quadrilaterals and 20 triangular faces at the nose. The 
direction of march at the aft end of the nozzle is constrained to lie in the plane 
perpendicular to the axis of revolution. Figure 3 shows the symmetry plane of 
the extruded mesh. Figure 4 shows a detailed view of the mesh in the nonconvex 
region near the nozzle. As seen in the figure, the grid lines are orthogonal except 
at those regions where mesh lines converge, i.e., where the Poisson smoother 
does the most work. Figure 5 shows the detailed view of the nose. As can be 
seen from the figure, the point at the nose is a 20-valent node. Although the 
mesh lines in this region diverge because of the convexity of the corner, the 
distribution near the nose is observed to be very smooth.  
 
The final example is for a finned-missile configuration. The surface of the 
missile was defined using 7934 triangles and the mesh was extruded nine layers. 
Ten smoothing iterations were performed in each layer. Figure 6 shows a 
cutaway view of the symmetry plane of the mesh. At the aft end of the missile, 
the mesh was constrained to lie in an x=constant plane. No smoothing was 
applied in this plane. Figure 7 shows an isometric view of the surface of the 
outer layer of the mesh. As can be seen from the figure, the mesh appears 
qualitatively smooth. Figure 8 shows a view of the outer layer near the fin root. 



 
Figure 3. Symmetry plane of mesh generated around notional Apollo 

spacecraft 
 
 
 

  
Figure 4. Detail of nonconvex region 

near nozzle 
Figure 5. Detail of region near nose 

 
 

 
Figure 6. Symmetry plane of mesh generated around finned-missile 

 



  

Figure 7. Isometric view of mesh 
outer surface 

Figure 8. Detail of mesh outer 
surface near fin root 

 
 
 
Here the effects of the marching scheme are observed in the high aspect ratios of 
some of the triangles near the fin/body juncture. This effect is analogous to the 
clustering of grid lines emanating from concave regions of the initial surface that 
was observed in Figures 1 and 2 for a structured mesh. It should be noted that 
some of the observed effect is due to the observer’s position looking down on the 
fin. 

Summary 
A novel algorithm to extrude smooth, near-body volume meshes from surface 
meshes of arbitrary topology has been presented. The meshes are classified as 
generalized meshes because multiple element topologies may be present within 
the same mesh. The algorithm utilizes a three-step, parabolic scheme based on 
the Poisson equation used in structured grid generation to extrude the volume 
mesh. Structure of the mesh in the direction of extrusion was exploited so that a 
surface-smoothing algorithm for unstructured meshes could be employed. The 
technique was demonstrated for surface meshes consisting of a structured 
quadrilateral grid, a quadrilateral-dominant, mixed surface mesh, and an 
unstructured surface mesh. Presently, the algorithm is not yet mature. Further 
research needs to be performed to determine the best form of the control 
functions for the mixed topology meshes. Additionally, improvements in 
algorithm efficiency are needed.  
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